
Public Key Cryptography Using
Discrete Logarithms in Finite
Fields:
Algorithms, Efficient Implementation and Attacks

L. Maurits (1105909)

Supervisor: Dr R. J. Clarke

Thesis submitted for the degree of Honours in Pure Mathematics

SCHOOL OF MATHEMATICAL SCIENCES
DISCIPLINE OF PURE MATHEMATICS

Preface

The field of cryptography (from the Greek kryptos, meaning “hidden” and
graphein, meaning “to write”) is concerned with problems related to the se-
curity of information, such as: ensuring that information transmitted over a
public channel cannot be understood by an eavesdropper; verifying that re-
ceived information has indeed been sent by the party claiming to have sent it;
and ensuring that the information has not been tampered with by unauthorised
parties in transit. These problems have been of interest to humanity since an-
cient times, historically in connection with military and diplomatic affairs. The
“shift cipher” of Julius Caesar and the cipher rods of the Spartan military are
well known historical examples of cryptography. More recently, the efforts of
the Allied forces in breaking the Nazi “Enigma” code have been credited with
having shortened World War II by up to two years.

Since the advent and subsequent widespread adoption of the digital com-
puter, the range of applications for cryptography has exploded and the field
has matured from what was once arguably an art into a definite science of the
highest mathematical sophistication. Today, cryptography is used to provide
security to a host of daily activities, including but not limited to: the electronic
transfer of money via ATMs, EFTPOS or internet banking and purchase sys-
tems; the transmission of voice, photo and video data over mobile telephone
networks; the transmission and storage of electoral votes cast using electronic
voting machines; and the use of email, instant messaging and other computer
communication for confidential business discussion or collaboration, “whistle-
blowing”, transmission of sensitive data such as police or hospital records and
private personal communications.

Perhaps the most important change cryptography has undergone in its long
history has been the revolutionary discovery of public-key cryptography, an idea
both first proposed and accomplished in 1976 by Whitfield Diffie and Martin
Hellman. All previous means of secure communication had required that the
participating parties agree on a secret key beforehand. The security of any
subsequent communication relied upon this key being agreed upon in perfect
secrecy and remaining undiscovered by any third parties. This posed a major
practical difficulty, especially when secure communication over long distances
or between parties with no prior acquaintance was desired. Public-key cryp-
tography removes this requirement and allows secure communication between
two parties with no prior secret exchange of keys. This represented a major
paradigm shift in the world of cryptography, one which enabled many of the
applications of cryptography in wide use today.

ii

iii

Every instance of public-key cryptography has a certain difficult computa-
tional problem underpinning its security - security is assured as long as solving
this problem is infeasible. While many difficult problems have been proposed
as potential bases for public-key cryptography, just two problems underpin the
security of all widely used public-key cryptography today. These are the integer
factorisation problem of number theory and the discrete logarithm problem of
group theory. Public-key systems based upon the latter problem are the subject
of the present text.

This thesis is a survey of existing knowledge related to public-key cryptog-
raphy which is based upon one particular instance of the discrete logarithm
problem, concerning discrete logarithms over finite fields, although it contains
much material which is relevant to the more general problem, and even to cryp-
tography in general. The author deeply regrets that, due to space and time
constraints, it is not exhaustive! Nevertheless, the most important examples
of public-key cryptography using discrete logarithms, in terms of wide use and
importance of applications, are discussed here. Issues relating to efficient com-
putation in finite fields, which lead to efficient implementations of public-key
cryptography, are also discussed, although there is a vast and detailed litera-
ture on this subject of which only the surface is scratched. Finally, algorithms
for computing discrete logarithms and associated problems in finite fields are
presented, which may be used to attack the cryptosystems presented.

A familiarity with the theory of finite fields, and associated algebraic con-
cepts such as groups, rings and polynomials, as well as some basic number
theory, is assumed in this thesis. A typical undergraduate education in pure
mathematics should be sufficient for the material to be read with no major con-
fusion. The reader who requires a reference on this theory, or who is interested
in further reading regarding many of the topics discussed here, is directed to-
wards three books in particular, which have been instrumental to the research
which produced this thesis: Lidl and Niederreiter’s highly regarded (though now
somewhat dated) book Finite Fields [44] provides an encyclopedic reference for
the fundamental theory of finite fields; Shparlinski’s book Finite Fields: Theory
and Computation [72] presents a fairly modern survey of major computational
problems and applications related to finite fields and in particular includes a
monumental bibliography of some 3075 books and papers on every aspect of the
subject; The book of Blake, Gao, Mullin, Vanstone and Yaghoobian, Applica-
tions of Finite Fields [9], discusses some basic computational theory and many
applications of finite fields, including some material extending that presented
here. For general references on cryptography and its implementation, the clas-
sic (though again dated) books Applied Cryptography [65] by Bruce Schneier
and the Handbook of Applied Cryptography [47] by Menezes, van Oorschot and
Vanstone are recommend, as well as the more modern Modern Cryptography:
Theory and Practice [45] by Wenbo Mao.

iv

The material contained in this thesis is summarised on a chapter by chapter
basis as follows:

Chapter 1 provides the setting and motivation for the remainder of the ma-
terial. It introduces the public-key cryptography paradigm and also defines
discrete logarithms and the discrete logarithm problem. Three widely used
public-key “cryptographic primitives” which rely upon the difficulty of comput-
ing discrete logarithms for their security are presented: the Diffie-Hellman key
exchange protocol, the Elgamal cryptosystem and the Digital Signature Algo-
rithm, part of the Digital Signature Standard.

Chapter 2 discusses some details of efficient computation in finite fields. It
presents methods for representing finite fields of both prime and prime power
order, which are used in subsequent chapters. It also surveys some non-trivial
algorithms for performing basic computational tasks with the given representa-
tions, namely multiplication and exponentiation. The problem of constructing
irreducible polynomials over finite fields is treated briefly, since this problem is
relevant to one of the given field representations. The material in this chapter
is relevant to the efficient implementation of both the cryptographic primitives
discussed in the previous chapter and the attacks on these primitives developed
in later chapters.

Chapter 3 describes and analyses a number of discrete logarithm algorithms
which are applicable to arbitrary finite cycle groups (so-called “generic algo-
rithms”). These algorithms may be used to attack any of the primitives pre-
sented in Chapter 1. Some empirical observations from computer experiments
using these algorithms are presented.

Chapter 4 is devoted to the problem of factoring polynomials over finite
fields. The algorithms discussed here will be of crucial importance in a dis-
crete logarithm algorithm which is discussed in the following chapter. Two well
known factorisation algorithms are considered, the deterministic algorithm of
Berlekamp and the probabilistic algorithm of Cantor and Zassenhaus.

Chapter 5 considers a class of non-generic discrete logarithm algorithms
which can be applied to finite fields. These “index calculus” algorithms are the
most efficient algorithms known for solving the discrete logarithm problem in
the multiplicative group of a finite field. The general template of this class of
algorithm is discussed, and then a number of specific instances are considered
in detail.

Acknowledgements

First and foremost, my sincerest thanks are due to my supervisor, Bob Clarke.
Bob has overseen the development of every stage of this thesis, regularly proof-
reading the work in progress and providing valuable advice. I am most fortunate
to have had a supervisor with not only an inspiring understanding of the algebra
in this thesis, but also a knowledge of modern cryptography and the relation
between the two.

I would like to thank Distinguished Emeritus Professor Ron Mullin, from
the University of Waterloo in Ontario, Canada. Professor Mullin took the time
to correspond with me regarding my discovery of an error in a paper of his
(and other authors) and confirmed my correction. Thanks are also due to my
fellow honours student Edward Watts for his assistance in the early stages of
locating this error. Ed verified many of my calculations and offered some helpful
suggestions. Of course, Bob also confirmed my final conclusion and offered the
advice to contact Mullin, for which I am grateful.

Thank you to Samuel Cohen, who proofread a draft copy of this thesis
for mathematical errors, and to Kirsty Hill who did the same for spelling and
grammatical errors. Their feedback was most helpful and is appreciated. If any
errors of either type remain in this work, the responsibility is mine alone.

Finally, thank you to Kirsty for her patience and understanding as I spent
an inordinate amount of this year hidden behind computers and journal papers.

v

Notation

Symbols

Symbol Interpretation

N The set of natural numbers, {1, 2, 3, . . .}.
Z The set of integers, {0,±1,±2,±3, . . .}.
Z+ The set of non-negative integers, {0, 1, 2, 3, . . .}.
Zn The ring of integers modulo n, {0, 1, 2, . . . , n− 1}.
Z∗n The multiplicative group of integers which are units

modulo n.
Fq The finite field (or Galois field) of order q.
char(Fq) The characteristic of the field Fq.
R∗ The multiplicative group of the ring R.
R[x] The ring of polynomials over the ring R, in the

indeterminate x.
gcd(f(x), g(x)) The unique monic polynomial of greatest degree dividing

both f(x) and g(x).
〈α〉 The principal ideal generated by the ring element α.
¤ End of proof.

Pseudocode

Many algorithms are presented in this thesis. These algorithms are presented
in the form of pseudocode; a ficticious programming language designed to make
the operation of the algorithm clear without any of the confusing details which
may be associated with a real programming language. The reader with even
passing familiarity with any real language should find our pseudocode clear. We
note the following here:

• Algorithm names are print in smallcaps, with arguments listed within
parentheses and separated by commas. For example Squarefree(f(x)).

• Variable assignment is denoted using ←. For example, x← 42 stores the
value 42 in the variable x.

• Control statements are printed in bold. These include do, For, If, Re-
turn, Unconditionally and While. These statements act as they do in
most real languages.

vi

Contents

Preface ii

Acknowledgements v

Notation vi

1 Discrete Logarithms and Public Key Cryptography 1
1.1 Discrete Logarithms in Finite Fields 1
1.2 Public Key Cryptography With Discrete Logarithms 4

1.2.1 Public Key Cryptography 4
1.2.2 Diffie Hellman Key Exchange 5
1.2.3 Elgamal Cryptosystem . 6
1.2.4 Digital Signature Algorithm 7

1.3 Further Reading . 9

2 Efficient Computation in Finite Fields 10
2.1 Representations of Finite Fields 10

2.1.1 Representing Prime Order Fields with Integers 11
2.1.2 Representing Prime Power Order Fields with Polynomials 11
2.1.3 Further Reading . 12

2.2 Fast Multiplication . 12
2.2.1 Reduction of Integer to Polynomial Multiplication 13
2.2.2 The Classical Polynomial Multiplication Method 14
2.2.3 Karatsuba Polynomial Multplication 14
2.2.4 Fast Fourier Transform Polynomial Multiplication 16
2.2.5 Further Reading . 23

2.3 Fast Exponentiation . 23
2.3.1 Classical Exponentiation 23
2.3.2 Exponentiation by Squaring 24
2.3.3 Addition Chain Exponentiation 24

2.4 Construction of Irreducible Polynomials 26
2.4.1 Further Reading . 29

3 Generic Discrete Logarithm Algorithms 31
3.1 Trial Exponentiation . 32
3.2 Shanks’ Baby-Step Giant-Step method 32
3.3 Pollard’s ρ-method . 34
3.4 Pollard’s λ-method (Kangaroo Method) 41

vii

viii CONTENTS

3.5 Pohlig-Hellman Method . 46

4 Factorisation of Polynomials over Finite Fields 49
4.1 Introduction and Motivation . 49
4.2 Some Partial Factorisations . 50

4.2.1 Squarefree Factorisation 50
4.2.2 Distinct Degree Factorisation 53

4.3 Berlekamp’s Algorithm . 55
4.4 The Cantor-Zassenhaus Algorithm 60
4.5 Further Reading . 64

5 Index Calculus Algorithms for Finite Fields 66
5.1 Generic Description . 67
5.2 A Simple Index Calculus Method for Fpn 68
5.3 An Improved Method for Fields Fpn 75
5.4 Improved Methods for Fields of Characteristic 2, F2n 77

5.4.1 The Waterloo Work . 77
5.4.2 Coppersmith’s Work . 79

5.5 A Simple Index Calculus Method for Fields Fp 80
5.6 An Improved Method for Some Fields Fp 81
5.7 Further Reading . 85

A Computer Code 87
A.1 The GNU Multiple Precision Library 87
A.2 Pollard’s ρ-method . 87

Bibliography 90

Chapter 1

Discrete Logarithms and
Public Key Cryptography

This thesis is concerned with a difficult computational problem in group theory.
This problem is called the discrete logarithm problem and has been the subject
of intensive research by the mathematical community for the past thirty years.
The primary motivation for this research is the wide range of applications which
the discrete logarithm problem has found in the area of cryptography. In par-
ticular, the difficulty of the discrete logarithm problem forms the basis of the
security for many algorithms in public key cryptography, for performing tasks
such as exchanging secret keys over public channels, providing confidentiality
to communications between two parties with no prior acquaintence, and ensur-
ing the authenticity of electronic messages. We are interested in the discrete
logarithm problem as it is posed over a finite field.

This chapter is composed of two parts. First, we introduce the concept of
discrete logarithms over finite fields and formally define the discrete logarithm
problem. We also give some definitions from theoretical computer science which
will be used throughout the rest of the thesis. In the second part, we introduce
the paradigm of public key cryptography and present three algorithms based
upon the discrete logarithm problem in finite fields.

1.1 Discrete Logarithms in Finite Fields

The primary algebraic setting of this thesis is the finite field (or Galois Field)
of order q, which we denote Fq. We briefly recall that Fq is a set of q elements
equipped with two binary operations, multiplication and addition, with the
properties that Fq forms an abelian group under addition (with identity 0) and
the non-zero elements F∗q = F \ {0} form an abelian group under multiplication
(with identity 1). We note that finite fields of order q exist only when q is of
the form q = pn, where p is a prime number and n is a natural number, and
that there is a unique field of any such order.

We are interested in the concept of discrete logarithms on the finite field
q (a concept which is in fact well defined for all finite cyclic groups), which
are defined in analogy to the familiar logarithms of the real numbers. The
key property of finite fields to recall here is that the multiplicative group F∗q is

1

2 CHAPTER 1. DISCRETE LOGS AND PUBLIC KEY CRYPTO

cyclic, i.e. there exists a field element α ∈ F∗q with the property that F∗q = 〈α〉 =
{αi|i = 0, 1, 2, . . .}. This element α is called a generator of F∗q or a primitive
element of Fq.

Definition 1.1.1. Discrete Logarithm

Let α be a primitive element of the finite field Fq. For any element β ∈ F∗q ,
the discrete logarithm of β to the base α, denoted logα(β) is the unique integer
x in the set {0, 1, 2, . . . , q − 1} such that αx = β.

The similarity to real logarithms is clear. We note that there are in fact an
infinite number of x ∈ Z such that αx = β for any β ∈ F∗q , since αx+k(q−1) = αx

for any k ∈ Z. We explicitly define the discrete logarithm to be the least non-
negative such integer. This allows us to cleanly state the following property of
discrete logarithms, which the reader can easily verify and will recognise as the
generalisation of a well known property of real logarithms.

Theorem 1.1.2. Discrete Logarithms of Products

For any finite field Fq, primitive element α and collection of elements
β0, β1, . . . , βk−1 ∈ F∗q it is true that:

logα

(
k−1∏

i=0

βi

)
≡

k−1∑

i=0

logα(βi) (mod q − 1). (1.1)

In light of this result, we usually think of the discrete logarithms of F∗q as
being elements of the additive group Zq−1. We can then think of a discrete log-
arithm function which is an isomorphism logα : F∗q → Zq−1. It is the evaluation
of this isomorphism in which we are interested. Precisely, we are concerned with
the following problem.

Definition 1.1.3. Discrete Logarithm Problem

The discrete logarithm problem in a finite field is: Given a finite field Fq,
a generator α of F∗q and an element β ∈ F∗q , compute the discrete logarithm
logα(β).

Our consideration of the discrete logarithm problem (or DLP) is algorithmic
in nature. We present well-defined sequences of algebraic operations, suitable
for programming into a digital computer, (i.e. algorithms) which will solve
the DLP. Some of these algorithms involve random variables. These are called
probabilistic algorithms. Algorithms which do not involve random variables are
called deteministic algorithms. We prove results which provide a measure of
the amount of time and storage space required by these algorithms. In order
to facilitate this style of exposition, we now present some elementary concepts
regarding the analysis of algorithms. This subject is known as computational
complexity theory and is one of the major disciplines of theoretical computer
science. The ideas of complexity theory may be stated rigorously in terms of
a well developed formalism. However, we forego this, instead giving simplified
definitions which we feel are appropriate for use in what is intended as a primar-
ily mathematical thesis with a computational bent. Most of the ideas of from

1.1. DISCRETE LOGARITHMS IN FINITE FIELDS 3

complexity theory discussed here are treated more formally in [37], and brief
discussion is also given in most general cryptography references, for example
[65, 47, 45].

Definition 1.1.4. Time and Space Complexity

The time complexity of an algorithm is the number of “steps” (instances
of some elementary computation) which the algorithm must perform to solve
a problem, expressed as a function of the input size (usually denoted n). The
space complexity of an algorithm is the number of some elementary units of
“storage” or “memory” which the algorithm requires, expressed in the same
way. In the case of a probabilistic algorithm, the time and space complexities
refer to the expected numbers of steps and units of storage.

In order to discuss the time and space complexity of algorithms, it is impor-
tant to decide upon what shall be considered as an elementary computation and
an elementary unit of storage. We do not define “computation” or “storage”;
it is hoped that these concepts will be understood intuitively. For algorithms
dealing mainly with finite fields, obvious choices for an elementary computa-
tion are a field addition and/or a field multiplication. Throughout this thesis,
we shall consider an elementary computation to be the multiplication of two
field elements. The number of field additions an algorithm requires thus has
no influence on the algorithm’s computational complexity. We feel that this
choice is reasonable (and it is certainly common) because additions can usually
be performed faster than multiplications on digital computers and because in
most algorithms additions do not usually outnumber multiplications by an un-
reasonable amount. The elementary unit of storage is almost always taken to
be a bit. With this measure, the size of an element of Fq is log q1.

We now define two classes of algorithm, classifying them by time complexity.

Definition 1.1.5. Polynomial Time Algorithm

An algorithm is said to be a polynomial time algorithm (alternatively, is
said to run in polynomial time) if its time complexity is bounded above by a
polynomial function of the input size.

Definition 1.1.6. Exponential Time Algorithm

An algorithm is said to be an exponential time algorithm (alternatively, is
said to run in exponential time) if its time complexity is bounded above by an
exponential function of the input size.

It is usual to identify running in polynomial time with being efficient and
running in exponential time as being inefficient, even though this is not always
the case. A problem is considered “easy” if it can be solved in polynomial time
and “hard” if no polynomial time algorithm is known. At the time of writing,
no polynomial time algorithm for the discrete logarithm problem is known. All
of the algorithms we will see in this thesis for problems other than the DLP run
in polynomial time.

We end our discussion of computational complexity by introducing some no-
tation which is very commonly used to express the time and space complexities

1Unless otherwise specified, (non-discrete!) logarithms in this thesis are to base 2

4 CHAPTER 1. DISCRETE LOGS AND PUBLIC KEY CRYPTO

of algorithms. This notation is most widely known as “big O” notation, but is
also known as asymptotic notation or Landau notation.

Definition 1.1.7. “Big O” Notation

A function f(n) is said to be O(g(n)) (“big O g(n)”, or “order g(n)”) if:

lim sup
n→∞

∣∣∣∣
f(x)
g(x)

∣∣∣∣ <∞

If an algorithm has time complexity O(nk), it is common to say that the
algorithm “runs in time O(nk)” or “takes time (nk)”.

We have mentioned that there is no known polynomial time algorithm for
solving the DLP (or, equivalently, evaluating the discrete logarithm isomor-
phism from F∗q to Zq−1) and hence that the problem may be considered “hard”.
However, the inverse function of the discrete logarithm isomorphism is simply
the exponentiation isomorphism from Zq−1 to F∗q which maps x to αx. This iso-
morphism can be trivially evaluated in polynomial time. Using loose language
to describe a rigorously defined concept, a function which is easy to compute
but hard to invert is called a one-way function. The existence of one-way func-
tions as they are formally defined is an open problem in theoretical computer
science, but exponentiation in a finite field is a well regarded candidate for being
a one-way function. This is the reason why the computation of discrete loga-
rithms has found relevance in the field of cryptography, where one-way functions
are used in the construction of secure algorithms for performing various tasks.
This cryptographic relevance is our primary motivation for studying the discrete
logarithm problem, and is discussed in detail in the following section.

1.2 Public Key Cryptography With Discrete Log-
arithms

1.2.1 Public Key Cryptography

Until relatively recently in the long history of cryptography, its applications
have been limited by the need for shared, pre-established secrets. If Alice and
Bob wish to communicate securely, they must both have knowledge of some
secret key which is used to encrypt and decrypt messages. The security of their
communication relies upon the assumption that they are the only parties in
possession of this key; if the key is known by an eavesdropper Eve, then Eve
may read all communications. If Alice and Bob are separated by any substantial
physical distance, the secure transfer of a secret key by a secure courier or other
means can be difficult, expensive or even impossible. Further more, if each
member of a large party wishes to be able to communicate privately with every
other member, each member is required to know and keep secret a large number
of keys. These factors, often collectively referred to as the key distribution or key
management problem, greatly restricted the situations in which cryptography
could be used.

In 1976, a new paradigm in cryptography arose which removed these restric-
tions and led to an explosion in the use of cryptography. This new cryptography
removes the need for users to share a pre-established secret. Instead, each user

1.2. PUBLIC KEY CRYPTO WITH DISCRETE LOGS 5

possesses a so-called key pair, consisting of one public key and one private key.
As the names suggest, the public key may be made publically available (e.g.
published on a website, attached to emails) while the private key must be kept
secret. Messages which are encrypted using a user’s public key can only be
decrypted using that user’s private key. Cryptography following this paridigm
is referred to as public key cryptography, the “old” alternative being private
key cryptography (the respective alternate names asymmetric and symmetric
cryptography are also used).

Using public key cryptography, Alice and Bob need only exchange their
public keys, without concern as to eavesdropping, before they can communicate
privately. This allows secure communication between parties with no prior ac-
quaintence or communication and without the need for a secure means of key
transfer. Further, in a party of n users desiring pairwise privacy, each user must
keep only one secret key and n keys must be made publically available to all
users. By contrast, using private key cryptography each user must keep n − 1
secret keys, with a total of n2 − n secret keys having to be generated and se-
curely transferred. The difference in difficulty of key management is thus quite
significant. With the advent of public key cryptography, cryptography moved
out of its former exclusive domain of government or military use and is today
widely used by corporations of all sizes as well as by individuals.

The author wishes to avoid giving the mistaken impression that private key
cryptography is today obselete; it is, in fact, still widely used. This is largely due
to the fact that public key cryptography tends to be substantially less efficient
than private key cryptography, both in terms of the time required to perform
an encryption and the amount of space consumed by the encrypted message
compared to the original message. For this reason, it is common to use a public
key cryptosystem to securely transfer a secret key and then use this secret key to
secure further communications using a private key cryptosystem. This strategy
is termed hybrid encryption.

In this chapter we present three cryptographic primitives which are consid-
ered to be public key cryptography. Each primitive allows two parties, Alice
and Bob, with no prior acquaintance to perform three different tasks: Securely
exchange a secret key over an insecure channel, encrypt and decrypt messages
for confidential communication, and sign messages and verify these signatures
to ensure messages do not originate from imposters and are not tampered with
in transit.

1.2.2 Diffie Hellman Key Exchange

In 1976, W. Diffie and M. E. Hellman proposed an algorithm [22] which allows
two parties to securely negotiate a secret key over an insecure channel, the
security of which depends upon the difficulty of computing discrete logarithms.
This Diffie-Hellman key exchange is in wide use today: it is incorporated into
most web browsers and and is a part of many protocols and standards for
securing internet traffic, including the Secure Sockets Layer (SSL), Transport
Security Layer (TSL) and IPsec. Briefly, the algorithm, as executed by two
parties Alice and Bob, is as follows:

6 CHAPTER 1. DISCRETE LOGS AND PUBLIC KEY CRYPTO

Diffie-Hellman Key Exchange

1. Alice and Bob use the insecure channel to agree upon a finite field Fq and
a primitive element α of F∗q .

2. Alice and Bob each select a random integer, x and y respectively, from
{2, . . . , q − 2} which they keep to themselves.

3. Alice and Bob compute αx and αy respectively and send these to each
other over the insecure channel.

4. Alice computes (αy)x and Bob computes (αx)y.

At the end of this protocol, both parties now share the group element
αxy = αyx. This can be used to derive, say, a shared secret key for a pri-
vate key cryptosystem. An eavesdropper Eve knows only αx and αy. It is
clear that she must learn either x or y to obtain the shared secret. This can
only be accomplished from the information she knows by computing logα(αx)
or logα(αy). Thus, if the DLP in Fq is infeasible then the security of the key
exchange is assured.

1.2.3 Elgamal Cryptosystem

In 1985, E. Elgamal proposed a public key cryptosystem and a signature scheme
[24], the security of both of which depends upon the difficulty of computing dis-
crete logarithms. Today the Elgamal cryptosystem is the default public key
cipher for the widely-used GNU Privacy Guard (GPG) cryptographic software
suite. Briefly, the cryptosystem, as used by Alice to communicate confidentially
with Bob, is as follows:

Elgamal Cryptosystem

1. Key setup:

(a) Bob selects a finite field Fq and a primitive element α of this field.

(b) Bob selects a random integer x from {2, . . . , q−1}. This is his private
key.

(c) Bob computes β = αx and publishes the values Fq, α, β. This is his
public key.

2. Encryption:

(a) Alice encodes the message she wishes to send Bob as an element of
Fq, m, using a public encoding scheme.

(b) Alice selects a random integer y from {2, . . . , q − 1}. This integer
should be kept secret and used for only one encryption session.

(c) Alice computes c1 = αy and c2 = βym (α and β are known from
Bob’s public key).

(d) Alice sends Bob the ciphertext (c1, c2).

1.2. PUBLIC KEY CRYPTO WITH DISCRETE LOGS 7

3. Decryption:

(a) Bob receives the ciphertext (c1, c2).

(b) Bob computes c−x
1 c2 = (αy)−xβym = α−xyαxym = m.

(c) Bob decodes the message from m, according to the public scheme
used by Alice.

It is clear that an Eavesdropper requires knowledge of the private key x
in order to decrypt the message. To extract x from the information she has
requires computing logα(β). Thus, if the DLP in Fq is infeasible, the privacy of
Alice and Bob’s communication is assured.

1.2.4 Digital Signature Algorithm

In the same paper describing his cryptosystem, Elgamal proposed a digital sig-
nature scheme [24] which also based its security upon the infeasibility of discrete
logarithms. While this original algorithm is now considered insecure, it has in-
spired many similar algorithms which are considered secure. These signatures
are said to belong to the family of Elgamal signature schemes. One scheme from
this family was in 1991 proposed and in 1993 accepted as a United States federal
standard by the National Institute for Standards Technology. It is known as the
digital signature algorithm, or DSA (the standard outlining aspects of its use is
called the digital signature standard or DSS. These terms are sometimes used
interchangably). The latest revision of the DSS, as published by NIST can be
found at [55].

The DSA is somewhat more complicated than the previously presented cryp-
tographic algorithms, for two reasons. Firstly, while the algorithm as a whole is
set in a large prime order finite field Fp, many computations take place within
subgroup of F∗q with prime order q. This idea is originally due to Schnorr [66].
It results in a smaller signature size and faster operation, without affecting the
security of the algorithm. The DSS mandates the relative sizes of p and q for
implementations of the DSA which comply to the standard. Secondly, like all
digital signature schemes the DSA requires the use of a hash function. For our
purposes, a hash function is any function H : Zp → Zq with the properties
that distinct values in Zp map to equivalent values in Zq very rarely and that
given an evaluation H(α) of the hash function, computing the preimage α is
computationally infeasible. The DSS specifies an appropriate hash function for
the specified values of p and q.

We now briefly describe the functionality of the DSA.
Digital Signature Algorithm

1. Key Generation

(a) Alice selects a large prime order finite field Fp.

(b) Alice selects a prime q such that q|p− 1.

(c) Alice computes g = h(p−1)/q (mod p), where h ∈ Fp is chosen so that
g 6≡ 1 (mod p).

(d) Alice selects a random integer x from {2, . . . , q − 1}. This is her
private key.

8 CHAPTER 1. DISCRETE LOGS AND PUBLIC KEY CRYPTO

(e) Alice computes y = gx (mod p) and publishes the four parameters
p, q, g, y. The element y is considered Alice’s public key. The param-
eters p, q, g may be shared among a group of users.

2. Message Signing

(a) Alice encodes her message as m ∈ Fp.

(b) Alice selects a random integer k from {2, . . . , q − 1}. This integer
should be kept secret and used for only one signature session.

(c) Alice computes r = (gk (mod p)) (mod q).

(d) Alice computes s = k−1(H(m) + xr) (mod q).

(e) Alice sends the values r, s as the signature of m.

3. Signature Verification

(a) Bob receives the message and signature components m′, r′, s′.

(b) Bob computes w = (s′)−1 (mod q).

(c) Bob computes u1 = H(m′)w (mod q).

(d) Bob computes u2 = r′w (mod q).

(e) Bob computes v = (gu1yu2 (mod p)) (mod q).

(f) If v = r′, Bob accepts the message m′ as authentic. Otherwise, the
message is considered invalid.

We now show the correctness of the DSA, i.e. that if the received message
and signature components are equal to the sent message and signature compo-
nents then v as computed above is equal to r′ and thus the message is correctly
verified as authentic.

We begin by observing that, since the message is authentic:

w ≡ (s′)−1 ≡ s−1 (mod q),
u1 ≡ ((H(m′)w) ≡ H(m)w (mod q),
u2 ≡ ((r′)w) ≡ rw (mod q)

We thus have:

v ≡ (gu1yu2 (mod p)) (mod q)

≡ (gH(m)wyrw (mod p)) (mod q)

≡ (gH(m)wgxrw (mod p)) (mod q)

≡ (g(H(m)+xr)w (mod p)) (mod q)

Now,
s ≡ k−1(H(m) + xr) (mod q),

so
w ≡ s−1 ≡ k(H(m) + xr)−1 (mod q).

1.3. FURTHER READING 9

From this it follows that:

(H(m) + xr)w ≡ (H(m) + xr)k(H(m) + xr)−1 ≡= k (mod q),

and so:
v ≡ (gk (mod p)) ≡ r ≡ r′ (mod q),

as we require.
It is clear that for a would-be imposter Mallory to forge Alice’s digital sig-

nature, she requires knowledge of Alice s secret key x. To extract x from the
information she has requires computing logα(β). Thus, if the DLP in Fq is
infeasible, the authenticity of Alice’s signature is assured.

1.3 Further Reading

We note that the DLP is well defined not just for finite fields, but in fact for ar-
bitrary finite cyclic groups; this generalisation is quite obvious. While the finite
field DLP is certainly the most widely used in cryptography, another instance
of the DLP has also attracted considerable attention from cryptographers. In
1987, N. Koblitz [36] proposed the idea of using the abelian group of points on
an elliptic curve over a finite field for DLP based cryptography. This is termed
elliptic curve cryptography, or ECC, and remains a major area of cryptographic
research. The most efficient known algorithms for solving the DLP in a finite
field (the index calculus algorithms, see Chapter 5) do not seem to extend to
solving the DLP in an elliptic curve group. The best known algorithms for the
elliptic curve DLP are the generic algorithms of Chapter 3, which have compar-
atively poor performance. For this reason, the elliptic curve DLP is infeasible
for groups much smaller than finite fields for which the DLP is infeasible. This
can lead to more efficient cryptographic systems.

We also note that the DLP is not the only difficult problem which is used
as the basis for cryptographic primitives. The problem of integer factorisation
is also believed to be computationally infeasible for sufficiently large integers.
This problem is the basis for the RSA cryptosystem [64], which was in fact the
first public key cryptosystem developed. Other problems have been proposed as
bases for cryptographic primitives, although none have achieved as widespread
use as the DLP and integer factorisation problems. These include the problem
of distinguishing between different representations of identical linear codes [46],
various problems in combinatorial group theory using braid groups [2, 16], and
various computational problems on integer lattices [28].

Chapter 2

Efficient Computation in
Finite Fields

Before we consider any of the computational problems or algorithms for solving
these problems which are presented in this thesis, we devote a chapter to some
preliminary considerations. Here we discuss how finite fields may be represented
for computation and how some very basic computations can be performed in
these representations. In particular, we consider the representation of finite
fields as rings of integers and of polynomials, and discuss methods for efficient
arithmetic and computation of greatest common divisors (GCDs) in these rep-
resentations. The details discussed in this chapter will generally not be referred
to in later chapters, which are concerned with higher level computations and
not how things work “under the hood”. This chapter may be skipped without
affecting the readability of subsequent chapters.

2.1 Representations of Finite Fields

Finite fields are abstract structures. In order to actually perform computations
within them, we need a representation 1 of the field; a concrete description of all
the field elements and how they interact under the binary operations of addition
and multiplication. Different representations may have different advantages and
disadvantages in terms of the amount of memory required to represent a field
element on a digital computer and the number of processor cycles required to
perform operations.

We will use one representation for prime order fields and one representation
for prime power order fields for the vast majority of this thesis, since these two
are intuitive, are likely to be familiar to the reader and are easily implemented on
a computer. They are by no means the only or the most efficient representations
for these fields. An alternative representation of prime order fields is given in
Chapter 5, since the representation of fields is of particular relevance to the
algorithm discussed there. References to more efficient representations are given
at the end of the section.

1Our use of the term “representation” here is distinct from its meaning of a homomorphic
map from a group to a set of linear transformations of a vector space.

10

2.1. REPRESENTATIONS OF FINITE FIELDS 11

2.1.1 Representing Prime Order Fields with Integers

The following theorem provides a simple representation for finite fields of prime
order, which we will refer to as the integer representation.

Theorem 2.1.1. Integer Representation of Prime Order Fields

The ring of integers modulo a prime number p, Zp, is a representation of
the finite field of order p, Fp.

This result is well known and so the proof is omitted.
This representation has many virtues and is almost always appropriate for

use in applications. The operations of modular integer addition and multiplica-
tion are present by default in almost every computer programming language, so
that prime order fields can be implemented with no extra work. Algorithms for
fast multiplication of integers will be discussed in Section 2.2. Division can be
performed by using the well-known extended Euclidean algorithm to compute
multiplicative inverses and then performing a multiplication. Greatest common
divisors can be computed using the Euclidean algorithm.

2.1.2 Representing Prime Power Order Fields with Poly-
nomials

The following theorem provides a simple representation for finite fields of prime
power order, which we will refer to as the polynomial representation.

Theorem 2.1.2. Polynomial Representation of Prime Power Order
Fields

Let p be a prime number and k ∈ N. Let p(x) ∈ Fp[x] be an irreducible
polynomial of degree k over the finite field of p elements. Then the factor ring:

Fq[x]
〈p(x)〉

is a representation of the finite field of order pn, Fpn .

This result is well known and so the proof is omitted.
Addition and multiplication in this representation are the familiar poly-

nomial addition and multiplication from high school, with integer arithmetic
performed in the field Fp and the final result reduced modulo the irreducible
polynomial p(x). Multiplication of polynomials of degree at most n can be com-
puted in the obvious manner requiring O(n2) multiplications in Fq. Algorithms
for faster multiplication of polynomials will be discussed in Section 2.2. Since
polynomial rings form Euclidean domains with the norm of a polynomial being
its degree, inversion of field elements may be performed by using the extended
Euclidean algorithm. Modular reduction of polynomials where all degrees are
at most n can be performed in time O(n2) using polynomial long division. The
greatest common divisor of two polynomials (the unique monic polynomial of
highest degree dividing both polynomials) each of degree at most n can be com-
puted using the Euclidean algorithm. The cost of computing a GCD of two

12 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

polynomials of degree at most n in this way is O(n2) (see [50]). A faster algo-
rithm described by Moenck in [50] can compute GCDs with cost O(nM(n)) if
two degree n polynomials can be multiplied in time M(n).

The polynomial representation is particularly efficient for prime power order
fields of characteristic 2, F2k . In this representation, a field element is a poly-
nomial over F2, which can be represented on a computer as a binary integer
of as many bits as the degree of the polynomial. For example, the degree 8
polynomial 1 + x2 + x5 + x6 + x8 may be represented as either of the 8 bit inte-
gers 101100101 = 357 or 101001101 = 333. With this representation, addition of
polynomials becomes simply the logical XOR operation, which is present in most
programming languages by default. For example, the polynomials 1 + x2 + x4

and x2 + x3 in F2[x] have binary representations 10101 and 01100 and sum to
1 + x3 + x4, which has binary representation 11010 = 10101⊕ 01100. Further,
multiplication of polynomials can be performed using a combination of XORs
and bit-shifts. Both of these operations are among the fastest a modern CPU
can perform.

From a practical perspective, implementing this representation requires the
ability to find an appropriate irreducible polynomial p(x) to use as a modulus.
The problem of generating irreducible polynomials of a specific degree over a
certain finite field will be considered in Section 2.4.

2.1.3 Further Reading

It is a well known result that any finite field Fqn forms an n-dimensional vector
space over the field Fq. Any basis for this vector space provides us with a
representation for Fqn . In the polynomial representation we gave for Fpn , the
basis for Fpn over Fp was the set {1, x, x2, . . . , xn−1}. This basis is not optimal
from the perspective of computation, but it is widely used because it is very
easy to work with, both in theory and in implementations.

There exists a class of bases for finite fields Fqn over Fq called normal bases.
Using these bases it is possible to perform operations of field multiplication and
exponentiation with subtantially greater efficiency than the methods we will
see later using our given representations. Normal bases which minimise the
complexity of these operations are termed optimal normal bases. A detailed
discussion of the theory of normal bases and the construction of optimal normal
bases can be found in the book of Blake et. al. [9].

2.2 Fast Multiplication

One of the most basic computational tasks in a finite field is multiplication,
which is usually a more expensive operation to perform than addition. Us-
ing the integer and polynomial representations introduced in Section 2.1, the
task of field multiplication is either the task of modular integer multiplication
or modular polynomial multiplication. For the sake of simplicity and brevity,
we consider here simply the task of multiplying either integers or polynomials.
Modular reduction in each case can be performed afterwards simply by per-
forming a division and discarding the quotient, keeping the remainder as the
result. This is certainly not optima; In the case of integers, a technique due

2.2. FAST MULTIPLICATION 13

to P. Montgomery [52] is a well known and efficient alternative which does not
separate multiplication and reduction.

2.2.1 Reduction of Integer to Polynomial Multiplication

We show here how the multiplication of large integers can be reduced to the
multiplication of polynomials and hence can be performed using the polynomial
multiplication methods which comprise the remainder of this section, which are
also used for multiplication in prime power fields Fpn .

Theorem 2.2.1. Reduction of Integer Multiplication to Polynomial
Multiplication

The problem of multiplying two integers n and m is reducible to the problem
of multiplying two polynomials.

Proof: Suppose we wish to multiply two large integers n and m. We may
write these integers as their expansion in some base, e.g. their binary or ternary
expansions. Suppose n and m have the following expansions in base b ∈ N:

n =
r∑

i=0

nib
i and m =

s∑

i=0

mib
i.

Then we can consider n and m as the values of two polynomials:

N(x) =
r∑

i=0

nix
i and M(x) =

s∑

i=0

mix
i,

evaluated at the point b, i.e. n = N(b),m = M(b). Further, it is clear that
the product nm is the value of the product of these two polynomials evaluated
at b. Hence two integers can be multiplied for the cost of one polynomial
multiplication and one polynomial evaluation.

¤

The remainder of this section is dedicated to the study of algorithms for the
fast multiplication of polynomials. Any of these may be used to construct an
algorithm for the fast multiplication of integers, using the above observation.
They are also used to provide fast multiplication of elements of prime power
order finite fields which are represented using the polynomial representation.

We consider the general problem of multiplying two polynomials f(x) and
g(x) with degree n where:

f(x) =
n∑

i=0

aix
i and g(x) =

n∑

i=0

bix
i,

and

f(x)g(x) = h(x) =
n∑

i=0

cix
i =

n∑

i=0

∑

0≤j≤k≤n
j+k=i

ajbkxi. (2.1)

14 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

Note that if two polynomials to be multiplied are not of equal degree, as is our
assumption above, the polynomial of least degree can be made into a polyno-
mial of degree equal to that of the other polynomial by the prepending of an
appropriate number of higher power terms with zero coefficients. Considering
the problem of multiplying two equal degree polynomials allows us to express
the time complexity of an algorithm in terms of a single input parameter, the
common degree n.

In general we do not specify the ring R which the polynomials are defined
over, as this does not affect the implementation or analysis of the algorithm.
Typically, the ring is the non-negative integers Z+ if we are multiplying large
integers using the observation of Theorem 2.2.1, or a finite field of prime order
Fp if we are multiplying two polynomials in the polynomial representation of
a prime power order field Fpn . The exception to this is in our discussion of
polynomial multiplication using the Fast Fourier Transform, discussed in Section
2.2.4, where the ring may be the complex numbers C, the ring of integers modulo
some integer ZN or a finite field of some appropriate order Fpn .

2.2.2 The Classical Polynomial Multiplication Method

The method which we call “classical”2 is the simple method used by school
students to multiply polynomials or to expand bracketed multiplications: The
leading term of the first polynomial is successively multiplied by each term in
the second polynomial, then the same is done for the next term of the first poly-
nomial, until each possible cross-term has been computed, at which stage like
terms are collected. Somewhat more directly and formally, the classical method
involves direct computation of the coefficients of h(x) via the final equality of
(2.1).

This requires the multiplication of n2 coefficients in R. This gives the clas-
sical method of polynomial multiplication a time complexity of O(n2). We will
see that this can be improved upon with more elaborate methods, however it
should be noted that the asymptotically faster algorithms usually involve some
overhead which means that they only become faster than the classical method
for polynomials of degree higher than some threshold the crossover point. For
some fast algorithms the crossover point can be rather high, and thus classical
polynomial multiplication still has a place as the algorithm of choice when only
low degree polynomials are to be multiplied.

2.2.3 Karatsuba Polynomial Multplication

Theorem 2.2.2. There exists a deterministic algorithm which multiplies two
degree n polynomials over F∗q using O(n1.5850) multiplications in F∗q .

The algorithm which constitutes proof of this theorem was published by A.
Karatsuba 3 in 1962 [34]. An English-language treatment is given by R. Moeck
in [51] and our treatment is based upon this. Surprisingly, this relatively recent
algorithm appears to be the first published algorithm for multiplying polynomi-
als which improves on the O(n2) complexity on the classical multiplication.

2Our “classical method“ goes by several names in the literature, including gradeschool
method, high school method, pencil-and-paper method, and die Schulmethode.

3The Russian name Karatsuba is sometimes transliterated at Karacuba in the literature.

2.2. FAST MULTIPLICATION 15

The method assumes that the common degree of the polynomials n is even
- if this is not the case for the polynomials as given, it can easily be made so
by appending a single higher power term with coefficient zero. With this done,
the even-degree polynomial f(x) can be written in the following form, which we
term the Karatsuba decomposition:

Definition 2.2.3. The Karatsuba decomposition of f(x) is:

f(x) = a0 + a1x + . . . + an−1x
n−1 + anxn

=
n/2∑

i=0

aix
i + xn/2

n/2∑

i=1

an/2+ix
i

= f0(x) + xn/2f1(x),

where the implicitly defined polynomials f0(x) and f1(x) each have degree n/2.

The key to Karatsuba’s method is the following observation:

Lemma 2.2.4. Let f(x) and g(x) have Karatsuba decompositions f(x) = g0(x)+
xn/2g1(x) and g(x) = g0(x) + xn/2g1(x). Then, omiting indeterminates for no-
tational clarity, we have:

fg =
(
f0 + xn/2f1

)(
g0 + xn/2g1

)

= f0g0 + xn/2(f0g1 + f1g0) + xnf1g1

= (1 + xn/2 − xn/2)f0g0 + xn/2(f0g1 + f1g0) + (xn + xn/2 − xn/2)f1g1

= (xn/2 + 1)f0g0 − xn/2(f1 − f0)(g1 − g0) + (xn + xn/2)f1g1

Proof of Theorem 2.2.2:
Consider the following algorithm:

Algorithm 2.2.5. Karatsuba(f(x), g(x))

Input: Polynomials f(x), g(x) ∈ Fq[x].
Output: f(x)g(x).

1. If deg(f(x)) = deg(g(x)) > 0 do:

(a) If deg(f(x)) = deg(g(x)) is odd do:

i. f(x)← f(x) + 0xn+1.
ii. g(x)← g(x) + 0xn+1.

(b) Return (xn/2 + 1)Karatsuba(f0(x), g0(x))− . . .
. . . xn/2Karatsuba(f1(x)− f0(x), g1(x)− g0(x)) + . . .
. . . (xn + xn/2)Karatsuba(f1(x), g1(x)).

2. Else do:

(a) Return a0b0.

16 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

The behaviour of this algorithm is clear. It uses Lemma 2.2.4 recursively
to continuously break a polynomial product down into three smaller products;
If Karatsuba is called with arguments f(x), g(x) of degree n > 0, then the
three calls it makes to itself are given arguments of degree n/2. Eventually the
polynomials are broken down into constants which are then simply multiplied.

We note that the various factors involving xn and xn/2 in front of these
products can be accounted for by simply increasing the powers of some terms
and performing some addition of coefficients. No coefficient multiplication is
required and so the computational effort involved is considered negligible in our
analysis. To find an expression for the complexity of Karatsuba’s method, we
use a recurrence relation. When multiplying two polynomials of degree n, our
recursive algorithm calls itself to evaluate 3 products of polynomials of degree
n/2. If Karatsuba’s method requires T (n) multiplications to multiply two degree
n polynomials then it is clear that T (n) satisfies T (n) = 3T (n/2). To solve this
recurrence relation, we seek a solution of the form T (n) = nc. Substituting this
into the recurrence relation and taking logarithms to base 2 we see that:

knc = 3k(n/2)c

= 3knc2−c

⇒ log(nc) = log(3nc2−c)
c log(n) = log(3) + c log(n)− c log(2)

⇒ c = log(3) ' 1.5850.

So Karatsuba’s recursive algorithm requires O(n1.5850) multiplications in R to
multiply two polynomials of degree n, as opposed to O(n2) multiplications for
the classical method.

¤

2.2.4 Fast Fourier Transform Polynomial Multiplication

In this section we discuss the manner in which a generalisation of the fast Fourier
transform (FFT) from its familiar setting of the complex numbers C to more
general rings, including finite fields, can be used to construct fast algorithms for
polynomial multiplication.

The ideas discussed here originated with the work of V. Strassen in 1968,
which were not published. Strassen later collaborated with A. Schönhage to
improve his method and the two published an integer multiplication algorithm
in 1971 [68] which remains the asymptotically fastest algorithm known to date.
Their method uses the reduction mentioned in Theorem 2.2.1 as well as the FFT
and will be discussed in this section. J. M. Pollard published a paper in the same
year [58] which generalised the FFT to certain finite fields and showed how it
could be used to achieve, among other things, fast multiplication of polynomials
over these fields.

We begin with some preliminaries concerning Fourier transforms.

Definition 2.2.6. Discrete Fourier Transform

Let R be a commutative ring with identity and let n be a unit in R, i.e.
division by n is possible. Let A = (a0, a1, . . . , an−1) ∈ Rn be a vector of n

2.2. FAST MULTIPLICATION 17

elements of R and let ωn be an n-th primitive root of unity4 in R. Then we
define the (n-th order) Discrete Fourier Transform (DFT) of A (with respect
to the root ωn) to be the vector Â = (â0, â1, . . . , ân) ∈ Rn defined by:

âj =
n−1∑

k=0

akωjk
n , r = 0, 1, . . . , n− 1.

The inverse DFT of a vector A is the vectorÂ defined by:

âj =
1
n

n−1∑

k=0

akω−jk
n , r = 0, 1, . . . , n− 1.

We denote the DFT of a vector A by F(A) and the inverse DFT of A by F−1(A).

This concept is most familiar in the case where R = C, the field of complex
numbers, and the n-th primitive root of unity is ωn = e2πi/n, but most of the
known results about this complex DFT generalise readily to arbitrary rings of
the type described above, and these are more useful for our present purposes.
The following result is fundamental:

Theorem 2.2.7. Relation Between DFT and inverse DFT

For any vector A which has a well-defined DFT, the DFT and inverse DFT
are related by:

F−1(F(A)) = A and F(F−1(A)) = A

Proof : We prove the first equality, the proof of the second one being similar.
By definition, the j-th component of F−1(F(A)), say bj , is:

bj =
1
n

n−1∑

k=0

(
n−1∑

l=0

alω
kl
n

)
ω−jk

n =
1
n

n−1∑

l=0

(
al

n−1∑

k=0

ωk(l−j)
n

)
. (2.2)

We consider the innermost sum, i.e. that indexed by k. When l = j, this sum
is:

n−1∑

k=0

ωk(j−j)
n =

n−1∑

k=0

ω0
n =

n−1∑

k=0

1 = n.

When l 6= j, the sum is:
n−1∑

k=0

ωk(l−j)
n =

n−1∑

k=0

(ωl−j
n)k

We recognise this as a finite geometric series in ωl−j
n , and using the well known

formula for such sums as well as the fact that ωn
n = 1 we see that the value of

the sum is:
1− (ωl−j

n)n

1− ωl−j
n

=
1− (ωn

n)l−j

1− ωl−j
n

=
1− 1l−j

1− ωl−j
n

= 0.

So the sum can be replaced by nδlj , where δ is the Kronecker delta, and (2.2)
becomes:

bj =
1
n

n−1∑

l=0

alnδlj =
n−1∑

l=0

alδlj = aj ,

4Recall that a ring element α is a primitive n-th primitive root of unity if αn = 1 and
αm 6= 1 for any m < n, i.e. α has multiplicative order n.

18 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

which is what we require.

¤

We now provide the link between the DFT and polynomial multiplication
which is the basis of this multiplication method. The key concept is that of a
cyclic convolution, defined here:

Definition 2.2.8. Cyclic Convolution

Let R be a ring. If A = (a0, a1, . . . , an1), B = (b0, b1, . . . , bn−1) ∈ Rn,
then the cyclic convolution of A and B, denoted A ∗ B, is the vector C =
(c0, c1, . . . , cn−1) defined by:

cj =
n−1∑

k=0

akbj−k,

where the subscript j − k is computed modulo n.

We now make an observation relating polynomial products to cyclic convo-
lutions:

Theorem 2.2.9. Polynomial Products as Cyclic Convolutions

For any ring R and any polynomial f(x) ∈ R[x] of degree n define the
coefficient vector of f(x) to be the vector F ∈ Rn+1 whose components are the
coefficients of f(x), ordered so that the first component of F is the constant
term of f(x). Let f(x) and g(x) be two particular polynomials in R[x] of degree
n. Define coefficient vectors F and G of f(x) and g(x), respectively, of length
2n + 1 by considering f(x) and g(x) to be polynomials of degree 2n with zero
coefficients for the n highest power terms. Then the cyclic convolution F ∗G is
the coefficient vector of the polynomial product f(x)g(x).

Proof : The jth term of the cyclic convolution F ∗G, say Cj , is given by:

Cj =
2n∑

k=0

akbj−k,

with j − k computed modulo 2n. Since we have “padded” the coefficient vector
F to length 2n + 1 with zeros, fk = 0 for k > n and this becomes:

Cj =
n∑

k=0

akbj−k. (2.3)

If j < n we split this into two sums as follows:

Cj =
j∑

k=0

akbj−k +
n∑

k=j+1

akbj−k.

In the first of these sums, k ≤ j so 0 ≤ j−k ≤ j < n < 2n, so reduction modulo
2n has no effect and we may interpret the subscript j − k as being “exact”. In
the second sum, k > j so j − k < 0 and the reduction modulo 2n is important.

2.2. FAST MULTIPLICATION 19

As k ranges from j+1 to n, j−k ranges from −1 to j−n and thus the reduction
of j − k modulo 2n ranges from 2n − 1 to j + n. The values in this range are
always > n, so, since G was also padded with zeros, bj−k = 0 and the second
sum vanishes. We are left with:

Cj =
j∑

k=0

akbj−k,

where the j − k computed exactly. This is, in fact, equivalent to:

Cj =
∑

0≤i≤k≤n
i+k=j

aibk, (2.4)

which is the coefficient of the j-th power term of f(x)g(x), exactly what we
want.

If j ≥ n, then the splitting into two sums is not needed. Our analysis of the
first sum in the j < n case applies directly to (2.3), since k ≤ j, and so (2.3) is
again the desired sum.

¤

Thus we see that the problem of computing polynomial products can be
reduced to the problem of computing cyclic convolutions. The following the-
orem provides the first step towards showing how this can be done efficiently.
In this theorem, the product of two vectors A and B should be understood
as a component-wise multiplication, i.e. if A = (a0, a1, . . . , an−1) and B =
(b0, b1, . . . , bn−1) then AB = (a0b0, a1b1, . . . , an−1bn−1).

Theorem 2.2.10. Convolution Theorem

If A = (a0, a1, . . . , an1), B = (b0, b1, . . . , bn−1) ∈ Rn, then:

F(A ∗B) = F(A)F(B) or A ∗B = F−1(F(A)F(B))

Proof : We prove the first statement of the theorem; the second is equivalent
by Theorem 2.2.7.

By definition, the j-th component of F(A ∗B), say ĉj , is:

ĉj =
n−1∑

k=0

ckωjk
n =

n−1∑

k=0

(
n−1∑

l=0

albk−l

)
ωjk

n =
n−1∑

l=0

alω
jl
n

(
n−1∑

k=0

bk−lω
j(k−l)
n

)

where we have changed the order of the sums and introduced a factor of
ωjl

n ω−jl
n = 1. Recalling that the k − l subscript is computed modulo n and

that powers of ωn may be reduced modulo n since ωn
n = 1, we recognise the

bracketed term of the final equality as in fact being b̂j , the j-th term of F(B).
So we have:

ĉj =
n−1∑

l=0

alω
jl
n b̂j = âj b̂j ,

which is what we require.

¤

20 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

The convolution theorem, combined with our earlier observation that mul-
tiplying two polynomials can be accomplished by computing the convolution of
the coefficient vectors of these two polynomials, show how we can use the DFT
to multiply polynomials: we compute the DFT of the coefficient vectors of each
polynomial, multiply these two vectors component-wise and then compute the
inverse DFT of the result. It is clear that the DFT of a vector A ∈ Rn can be
computed using O(n2) multiplications in R by proceeding directly according to
the definition. The effort involved in computing the DFTs dominates the effort
involved in multiplying two polynomials in this way, so the multiplication can
be performed with O(n2) multiplications. This offers no improvement over clas-
sical multiplication - in fact, when one considers the magnitude of the constant
hidden by the asymptotic notation, it is worse! Fortunately, this naive method
of computing DFTs is not optimal, which motivates the following definition:

Definition 2.2.11. Fast Fourier Transform
A Fast Fourier Transform is an algorithm for computing the DFT of a vector
A ∈ Rn using less than O(n2) multiplications in R.

Many FFT algorithms are known. The first, and by far the most widely
used, is the Cooley-Tukey algorithm, published by J. W. Cooley and J. W.
Tukey in 1965 [18] (although apparently known, much earlier, to Gauss). In
this thesis, “FFT” should be understood to mean the Cooley-Tukey FFT. By
using the FFT to compute DFTs with complexity less than O(n2), we can
multiply complex polynomials faster than the classical method. This is the idea
used by Schönhage and Strasssen to multiply large integers and by Pollard to
multiply polynomials over finite fields.

We discuss a specific case of the Cooley-Tukey FFT, which is the simplest
to describe and is known as the “radix 2, decimation in time” (DIT) case. This
case can be used only to transform vectors whose length is a power of 2. In
practice, this is not a significant limitation, as any vector can be made into such
a vector by adding additional 0 components without affecting the transform.
This is not the only form of the FFT possible and alternatives which place less
restrictions upon the vector to be transformed are discussed in [18].

Theorem 2.2.12. Cooley-Tukey FFT (Radix 2, Decimation in Time
(DIT))
Let R be a commutative ring with identity in which 2 is a unit, i.e. division by 2
is possible. Let n be a power of 2 and let A = (a0, a1, . . . , an−1) ∈ Rn. Then the
DFT Â of A or its inverse may be computed using O(n log(n)) multiplications
in R.

Proof : Consider the definition of the j-th component of Â. Recalling that if
ωn is an n-th root of unity, then ω2

n is an n/2-th root of unity, which we denote

2.2. FAST MULTIPLICATION 21

ωn/2, we see that:

âj =
n−1∑

k=0

akωjk
n

=
n/2−1∑

k=0

a2kω2jk
n +

n/2−1∑

k=0

a2k+1ω
j(2k+1)
n

=
n/2−1∑

k=0

a2kωjk
n/2 + ωj

n

n/2−1∑

k=0

a2k+1ω
jk
n/2.

We recognise the two sums in the final equality as two n/2-th order DFTs, of
the vectors:

Aeven = (a0, a2, . . . , an−2) and Aodd = (a1, a3, . . . , an−1).

Thus we see that we can compute the n components of Â by computing two
DFTs of half the order of our original transform, as well as n multiplications
by the additional factors ωj

n. These factors have become traditionally known as
“twiddle factors”.

Note that this “splitting” of the original DFT was possible because n was
even. Since n was chosen to be a power of 2, n/2 is also even and so we can split
the two DFTs of order n/2 in a similar manner, ending up with four DFTs of
order n/4 and some additional twiddle factors. We can continue to apply this
procedure recursively until we are computing “DFTs of order 1”. Observing
the similarity in form between the DFT and the inverse DFT, it should be clear
that we can compute an inverse DFT in a similar way. Note that the the inverse
DFT requires a division by n. Our requirement that 2 was a unit in R means
that division by any power of 2 is possible, and so the inverse DFTs required at
any step of our recursive algorithm can always be computed.

We now consider the complexity of this approach. It is clear that the total
number of splittings of the original DFT which are performed is log(n). At each
stage of the algorithm, we need to perform some multiplications by twiddle
factors. The number of such multiplications is always O(n), as we have n
multiplications in the first splitting, n/2 in the second, etc. Thus, the total
number of multiplications in R we need to perform is O(n log(n)), which proves
the theorem.

¤

We now consider the application of the above theory to the task of multipli-
cation.

Integer Multiplication

We may use Theorem 2.2.1 to reduce the task of multiplying two integers to
that of multiplying two polynomials with integer coefficients. By combining
Theorem 2.2.9, the Convolution Theorem and Theorem 2.2.12, we can do this
multiplication quickly by using an FFT over any appropriate ring which contains
the relevant integer coefficients and in which these coefficients multiply in the
same manner as they do in Z.

22 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

Since Z ⊂ C, we could use the complex numbers, with ωn = e2πi/n our n-th
root of unity. This is not particularly efficient for practical implementation,
as there is some loss of precision involved in working with floating point ap-
proximations to complex numbers. We can usually recover the exact result by
rounding, but since our coefficients are all integers we would like to be able to
multiply them precisely.

One solution is to perform the transformation in the ring of integers modulo
FN , ZFN

, where FN is an appropriately chosen Fermat number, i.e. is of the
form FN = 22N −1 for some natural N . If N is large enough, then the products
of our integer coefficients will not exceed FN and so the result will be the same
as multiplying the polynomials in Z. The roots of unity necessary for radix 2
DIT FFTs are abundant in this ring, as for any 2n we may set ω2n = 22N−n

and
then ω2n

2n = (22N−n

)2
n

= 22N ≡ 1 (mod 22N − 1). Similarly, division by 2, and
hence by any power of 2, is possible, as we observe that if 2−1 = 22N−1

then
2.2−1 = 2−1.2 = 22N ≡ 1 (mod 22N − 1).

The approaches with R = C and R = ZFN
are both considered by Schönhage

and Strassen in [68]. They show that the second method, using Fermat num-
bers, is the most efficient, and allows two n-bit integers to be multiplied in
O(n log(n) log(log(n))) operations.

Multiplication of Polynomials over Finite Fields

We may once again combine Theorem 2.2.9, the Convolution Theorem and
Theorem 2.2.12 to arrive at the following result:

Corollary 2.2.13. Let Fq be a finite field. If Fq supports the FFT, then
two polynomials f(x) and g(x) ∈ Fq[x] of degree ≤ n may be multiplied in
O(n log(n)) multiplications in Fq.

Note the requirement that Fq supports the FFT. There are two possible
obstacles here:

The first is that if our polynomials are over a field Fq which is of characteristic
2, then in that field 2 = 1+1 = 0, which is certainly not a unit. Division by 2 is
impossible and so the radix 2 DIT FFT which we have described above cannot
be used. This is not a particularly severe problem, as it is possible to define
a radix 3 FFT which recursively splits DFTs of vectors with length a power
of 3 into 3 DFTs of one third the size. Such an algorithm requires divisibility
by powers of 3, which in a field of characteristic 2 is simply equal to 1, which
is obviously invertible. The details of such an FFT are explained in [18]. The
fast multiplication of polynomials over finite fields of characteristic 2 is also
discussed by Schönhage in [67]. A different approach to the fast computation of
DFTs over fields of characteristic 2, using the theory of linearised polynomials,
is given by S. Federenko and P. Trifinov in [76].

The second problem which may arise is that a particular field may not con-
tain one of the primitive roots of unity required to support a DFT. In this case
it may be necessary to perform the transformation in an extension field of the
field of interest, which contains these roots.

2.3. FAST EXPONENTIATION 23

2.2.5 Further Reading

The basic idea behind Karatsuba’s method is breaking a polynomial down into
two polynomials of lesser degree and using this decomposition to speed up mul-
tiplication. This idea has been extended by Toom [75] and Cook [17]. There
is a family of Toom-Cook methods for polynomial multiplication which break a
polynomial down into k polynomials of lesser degree to speed up multiplication.
For k = 1, the Toom-Cook method is exactly classical multiplication, and for
k = 2 it is exactly Karatsuba’s method. The Toom-Cook algorithm with k = 3
is commonly used and is faster than Karatsuba’s method. As the value of the
parameter k is increased, the efficiency of the Toom-Cook eventually begins to
degrade.

A very interesting paper by D. J. Bernstein from 2001 [7] has the ambitious
goal of “first, to present every known technique for computing the product of
two large integers; second, to present every known technique for computing
the product of two polynomials over a commutative ring”. The methods of
Karatsuba, Toom, and Schönhage and Strassen are all discussed, as are FFT
based methods. Furthermore, each of these methods is considered in a very
algebraic manner, quite different to our discussions here, as some combination
of “liftings” and “reductions” between certain rings.

The use of Fourier transforms to multiply polynomials over rings can be
generalised substantially. In 1991, D. G. Cantor and E. Kaltofen [14] showed
that it could be used to multiply two degree n polynomials over an arbitrary, not
necessarily commutative and not necessarily associative algebra in O(n log(n))
algebra multiplications and O(n log(n) log(log(n))) algebra additions.

2.3 Fast Exponentiation

Closely related to the now discussed subject of multiplication in finite fields
is the subject of exponentiation. It should come as no surprise that crypto-
graphic algorithms relying upon the difficulty of the discrete logarithm problem
are heavily dependent upon exponentiation. Diffie-Hellman key exchange, El-
gamal encryption and Digital Signature Standard signing all require at least
one and usually many exponentiations within a finite field. Fast exponentiation
is essential to efficient implementation of these algorithms. In this section, we
consider two faster alternatives to “classical exponentiation”. We note that,
using our integer and polynomial representations of finite fields, exponentia-
tion in these fields is simply exponentiation performed modulo some prime or
irreducible element, which we shall denote by p.

2.3.1 Classical Exponentiation

The naive and obvious method for computing αn (mod p) is to multiply the
element α by itself and n times, reducing the result modulo p at each stage.
This method clearly requires O(n) field multiplications to obtain the final re-
sult. Even if we perform these n multiplications using the fast multiplication
algorithms of the previous section, this method is far from optimal. Further-
more, unlike the problem of polynomial multiplication, in which the classical
algorithm is the fastest for multiplying polynomials of low degree, classical ex-

24 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

ponentiation can always be improved upon, even for low exponents. This costly
method of exponentiation should never be used in practice.

2.3.2 Exponentiation by Squaring

A much more efficient method for exponentiation, which can be used in any finite
field (indeed, in any ring), goes by the name exponentiation by squaring5. In
this method, αn is computed using the recursive algorithm ExpSquare defined
below:

Algorithm 2.3.1. ExpSquare(α, n)

Input: Field element α ∈ Fq and exponent n ∈ N.
Output: αn.

1. If n = 1 do:

(a) Return α.

2. Else if n is even do:

(a) Return ExpSquare(α2, n/2).

3. Else do:

(a) Return αExpSquare(α2, (n− 1)/2).

This method obtains a result with a number of field multiplications of the
order log(n), which is vastly more efficient than the naive method.

2.3.3 Addition Chain Exponentiation

Addition chain exponentiation is an exponentiation method which can at times
require fewer multiplications than exponentiation by squaring, but which has
certain precomputation and storage overheads which do not make it appropriate
for all situations. We require a preliminary definition:

Definition 2.3.2. Addition Chain

An addition chain of length n is a sequence of integers {ai}ni=0 with the
properties:”

1. a0 = 1,

2. For k > 0, ak = ai + aj for some i, j < k.

An addition chain of length n may be called an addition chain for an, e.g.: an
addition chain for 26 (but not the only one) is:

{1, 2, 4, 6, 10, 14, 20, 26},
as 2 = 1 + 1, 4 = 2 + 2, 6 = 4 + 2, . . . , 26 = 20 + 6.

5This method is also known as “square and multiply”, “binary exponentiation” and the
“Russian peasant method”

2.3. FAST EXPONENTIATION 25

The first n numbers of the well-known Fibonacci sequence are always an
addition chain of length n, due to the definition of the Fibonacci numbers. It
is clear from the definition that the second term of any addition chain must be
equal to 2.

The central idea behind addition chain exponentiation is to compute an
addition chain for the desired exponent n. Suppose that {ai}ki=0 is such a chain.
We know αa0 = α1 and may compute αa1 = α2 using a single multiplication.
Now, a2 = ai + aj for i, j < 2 and so αa2 = αaiαaj . We may compute this
readily since we know αai and αaj for all the i, j < 2, i.e. i, j = 0, 1. Once we
have computed αa3 , we can in a similar manner compute αa4 , since a4 must be
a sum of two earlier terms in the addition chain. Proceeding in this way, we
may “climb” the addition chain until we have computed αak = αn. Algorithm
3.2.2 formally defines this process:

Algorithm 2.3.3. AddChainExp(α, n)

Input: Field element α ∈ Fq and exponent n ∈ N.
Output: αn.

1. Compute an addition chain {ai}ki=0 for the exponent n.

2. For l from 1 to k do:

(a) Compute and store αal as αal = αaiαaj for the appropriate i, j < l.

3. Return αak .

The number of multiplications required for an addition chain exponentia-
tion is clearly dependent upon the length of the addition chain. In some cases,
addition chains can be found of short enough length that addition chain expo-
nentiation will be more efficient than exponentiation by squaring. The lowest
exponent for which this occurs is n = 15. Using exponentiation by squaring, we
can compute α15 as α(α(αα2)2)2, using 6 multiplications. However, using the
addition chain {1, 2, 3, 6, 12, 15} we may compute α15 as αα2((αα2)2)2, using 5
multiplications. Greater savings can be achieved for higher exponents.

Addition chain exponentiation suffers from many complications. For in-
stance, of obvious interest is the length of the shortest possible addition chain
for a given exponent, the so-called optimal addition chain. There are many
outstanding conjectures but few proven results providing estimates or bounds
for the length of optimal addition chains. Furthermore, the task of actually
computing an optimal addition chain is quite expensive, potentially defeating
the advantage provided by addition chain exponentiation. There are, however,
algorithms for efficiently computing addition chains which are approximately
optimal and still offer better performance than exponentiation by squaring. For
a discussion of these issues, see Knuth [35]. Finally, we note that addition chain
exponentiation requires storing intermediate results which may be required later
further up the chain, whereas exponentiation by squaring requires only the stor-
age of the current result.

Because of the expense of computing addition chains, addition chain expo-
nentiation is best suited to applications where exponentiation with one particu-
lar exponent will be required many times, in which case an addition chain can be

26 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

precomputed once and then stored for all further uses. Later in the thesis we will
see a situation where this is definitely the case; using the Cantor-Zassenhaus
polynomial factorisation algorithm (introduced in Section 4.4) repeatedly to
factor different polynomials over the same field, as a part of the index calculus
algorithm for computing discrete logarithms (introduced in Chapter 5).

2.4 Construction of Irreducible Polynomials

Throughout the entirety of this thesis, we perform computations in prime power
order fields Fpn using the polynomial representation given in Theorem 2.1.2, i.e.
as the factor ring of polynomials over Fp modulo the ideal generated by an irre-
ducible polynomial p(x) of degree n. Thus the problem of how we can generate
irreducible polynomials of a given degree is of immediate practical concern. The
problem turns out to be quite simple; we can efficiently find irreducible poly-
nomials via the obvious method of successively generating random polynomials
and testing for irreducibility. There are certainly less naive methods which are
more effective for large degrees n. It is also true that not all irreducible polyno-
mials are equally attractive for use in polynomial representations. These details
are discussed briefly at the end of the section.

The main result of this section is:

Theorem 2.4.1. There exists a probabilistic algorithm which, given as input a
finite field Fq and positive integer n, produces as output an irreducible polynomial
p(x) ∈ Fq[x] of degree n using O(n4 log(q)) operations.

The algorithm which constitutes proof of Theorem 2.4.1 is the immediately
obvious one of random generation and testing. To establish the given complexity,
we require two lemmas.

The following lemma gives an explicit formula for the exact number of irre-
ducible monic polynomials over Fq of degree n. A complete derivation of this
result may be found in [44]. Although the derivation is not particularly difficult,
we do not present details here in order to conserve space. The formula we will
present involves the following function, well studied in number theory:

Definition 2.4.2. The Möbius Function

The Möbius function µ : N→ {−1, 0, 1} is defined as follows:

µ(n) =





1 if n = 1,

(−1)k if n is the product of k distinct primes,
0 if n is divisible by the square of a prime .

We have:

Lemma 2.4.3. On the Number of Irreducible Monic Polynomials of
Degree n in Fq[x]

The number Nq(n) of monic irreducible polynomials of degree n in Fq[x] is
given by:

Nq(n) =
1
n

∑

d|n
µ

(n

d

)
qd =

1
n

∑

d|n
µ(d)q

n
d

2.4. CONSTRUCTION OF IRREDUCIBLE POLYNOMIALS 27

Proof: Omitted.
From this it follows that:

Corollary 2.4.4. The probability Pq(n) that a non-zero polynomial in Fq[x]
of degree n selected at random using a uniform probability distribution over all
such polynomials is irreducible is approximately 1/n.

Proof: It is clear that every irreducible polynomial in Fq[x] may be written
as a monic irreducible polynomial multiplied by a non-zero constant, so that
there are (q − 1)Nq(n) irreducible polynomials of degree n. The total number
of non-zero polynomials of degree n is (q − 1)qn, so that the probability that a
random non-zero polynomial is irreducible is:

Pq(n) =
(q − 1)Nq(n)

(q − 1)qn
=

1
nqn

∑

d|n
µ(d)qn/d.

Separating the case d = 1 from the other terms in the sum above and observing
µ(1) = 1 we get:

Pq(n) =
1
n

+
1

nqn

∑

d|n,d>1

µ(d)qn/d.

It is easy to bound the sum in the above equation, which represents the error
in our approximation, and see that it is “small”. For instance, the author has
shown that the sum is < q1−n/2, so that even when q = 2, the smallest possible
value, we need only consider polynomials of degree n ≥ 22 before the error is
less than 0.001. For fields of interest in present day public-key cryptography,
such as F21024 or F22048 , the error is truly negligible.

¤

The second lemma we require to prove Theorem 2.4.1 is the following result,
due to Gauss. This result shall be used again later in the thesis; we term it
“Gauss’ product lemma” for ease of reference.

Lemma 2.4.5. For a given n ∈ N, the product of all monic irreducible polyno-
mials in Fq[x] having degrees d such that d | n is the polynomial xqn − x.

Proof: Omitted.
We shall use the following corollary to Gauss’ product lemma.

Corollary 2.4.6. A monic polynomial f(x) ∈ Fq[x] of degree n is irreducible if
and only if it satisfies both:

1. f(x) | xqn − x,

2. gcd(f(x), xqn/p − x) = 1 for all prime divisors p of n.

Proof: We prove the “if” statement of the theorem. The “only if” statement
may be established in a similar way.

Suppose f(x) satisfies condition 1. Then it is an immediate consequence of
Gauss’ product theorem that f(x) is either an irreducible polynomial of degree
n or a product of several irreducible polynomials, say f0(x), f2(x), . . . , fm(x),
of degrees n0, n2, . . . , nm such that

∏m
i=0 ni = n. Suppose that the latter is the

case. If ni = n/pi then fi(x) is an irreducible polynomial of degree dividing

28 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

n/pi and so contains as a factor a monic irreducible polynomial of the same
degree, say f ′i(x). By Gauss’ product theorem f ′i(x) is also a factor of xqn/p−x,
so gcd(f(x), xqn/p −x) 6= 1 and f(x) does not satisfy condition 2. Hence if f(x)
satisfies both conditions it must indeed be an irreducible polynomial of degree
n.

¤

We now present an algorithm which shall be used as a subroutine in the
algorithm proving Theorem 2.4.1.

Lemma 2.4.7. Testing Polynomials for Irreducibility

There exists a deterministic algorithm which determines if a given input
polynomial p(x) ∈ Fq[x] is irreducible over Fq in time O(n3 log(q)).

Proof : Consider the following algorithm:

Algorithm 2.4.8. TestIrred(p(x))

Input: A polynomial p(x) ∈ Fq[x].
Output: The flag True if p(x) is irreducible, the flag False otherwise.

1. If p(x) 6 | xqn − x do:

(a) Return False.

2. For all prime divisors p of n do:

(a) If gcd(p(x), xqn/p − x) 6= 1 do:

i. Return False.

3. Return True.

It is clear from Corollary 2.4.6 that this algorithm returns True if and only
if p(x) is irreducible. This test involves one division and then as many GCD
computations as there are prime divisors of n. For ease of analysis, we observe
that we may test p(x) 6 | xqn − x by testing that gcd(p(x), xqn − x) = 1. The
total number of GCDs thus required is certainly less than n. The largest poly-
nomial in each GCD has degree at most xqn

, which is exponential in the input
size. However, we can avoid an exponential algorithm by using the fact that
gcd(p(x), xqn − x) = gcd(p(x), xqn − x (mod p(x))). To reduce xqn − x modulo
p(x) it is sufficient to reduce xqn

. We can do this using exponentiation by squar-
ing with reduction modulo p(x) at each stage. Beginning with x, this requires
O(log(qn)) = O(n log(q)) steps, with each step requiring the multiplication of
two polynomials of degree at most n, taking time O(n2), and the reduction mod-
ulo p(x) of the resulting product of degree at most 2n, taking again time O(n2).
Thus this reduction takes time O(n2 log(q)). We then compute the GCD of two
polynomials of degree at most n, taking time O(n2), which is dominated by the
time taken for the reduction. This process of reduction and GCD computation
must be repeated n times, for a total time of O(n3 log(q)).

¤

2.4. CONSTRUCTION OF IRREDUCIBLE POLYNOMIALS 29

We now prove Theorem 2.4.1.
Proof of Theorem 2.4.1:
We use TestIrred (Algorithm 2.4.8) as a subroutine in the following prob-

abilistic algorithm:

Algorithm 2.4.9. GenIrred(Fq, n)

Input: A finite field Fq and a degree n ∈ N.
Output: An irreducible polynomial p(x) ∈ Fq[x] with deg(p(x)) = n.

1. Unconditionally do:

(a) Select a monic p(x) ∈ Fq[x] of degree n at random, using a uniform
probability distribution on the set of all such polynomials.

(b) If TestIrred(p(x)) is True do:

i. Return p(x).

The functionality of this algorithm is clear. It will continually generate
random polynomials in Fq[x] of degree n until one is determined to be irre-
ducible by our previous algorithm TestIrred, then return that polynomial.
From Corollary 2.4.4 we expect the algorithm to have to generate and test
n polynomials before an irreducible one is found. We showed that each irre-
ducibility test using TestIrred requires O(n3 log(q)) operations, so finding an
irreducible polynomial using GenIrred requires O(n4 log(q)). Since p(x) is
monic, the input size is n log(q), so GenIrred is a polynomial time algorithm,
as O(n4 log(q)) < O((n log(q))4).

¤

2.4.1 Further Reading

There are certainly more sophisticated methods for constructing irreducible
polynomials over finite fields than the trial and error method given here. When
polynomials of large degree are required, use of these may be preferable due to
the time required by GenIrred increasing in proportion to n4.

A paper due to Brawle and Carlitz from 1987 [10] describeds a binary oper-
ation on a subset of Fq[x]; that is, a way to combine two polynomials over Fq

of a certain kind to obtain a third such polynomial. This operation is termed
the composed product, and has the property that if two polynomials of relatively
prime degree are each irreducible then so to is their composed product. This
fact can be used to “build up” large irreducible polynomials from smaller ones
constructed using the simple method presented here. A discussion of how to ef-
ficiently compute composed products using matrix multiplication can be found
in [9].

A sophisticated probabilistic algorithm for the fast construction of irre-
ducible polynomials due to Shoup [70] was asymptotically the fastest algorithm
for the task at the time of its publication. The paper introduced two new
irreducibility tests, and also gives several references to other tests.

Sometimes there is an incentive to consruct irreducible polynomials of a
certain kind. For instance, irreducible binomials and trinomials (polynomials

30 CHAPTER 2. EFFICIENT COMPUTATION IN FINITE FIELDS

with 2 and 3 non-zero terms, respectively) are desirable for use in the polynomial
representation of finite fields, as reduction modulo such “sparse” polynomials
is more efficient than that modulo “dense” polynomials. A number of results
regarding irreducible binomials and trinomials can be found in the book by
Blake et. al. [9].

Chapter 3

Generic Discrete Logarithm
Algorithms

In this chapter, we present five algorithms for computing discrete logarithms
and analyse their time and space complexity. The algorithms, in order of pre-
sentation, are:

1. Trial Exponentiation,

2. Shanks’ “Baby-Step Giant-Step” Method,

3. Pollard’s ρ-method (1978),

4. Pollard’s λ-method (1978).

5. The Pohlig-Hellman method (1978).

Any of these algorithms may be used to mount an attack against any of the
cryptographic primitives which were presented in Chapter 1. As such, an un-
derstanding of the complexities of these algorithms is essential in deciding how
large a finite field must be used in a cryptographic primitive in order to render an
attack infeasible. Any of the techniques for efficient computation in finite fields
discussed in Chapter 2 may be used in the implementation of these algorithms.

The algorithms in this chapter are known as generic discrete logarithm al-
gorithms. The reason for this is that they can be used to solve the DLP in an
arbitrary finite cyclic group. In keeping with the theme of this thesis, we shall
present the algorithms and the result in terms of finite fields; the generalisa-
tions to arbitrary groups are trivial and immediately obvious. To fix notation
throughout the chapter, we shall concern ourselves with the computation of the
logarithm of β with respect to the primitive element α of the finite field Fq.

We shall see that the fastest algorithms in this chapter require O(
√

q) steps
to compute a logarithm in F∗q . For this reason, the algorithms are sometimes
referred to as square root attacks. It is, in fact, a proven result that this is the
least complexity a generic algorithm can accomplish; see, for example, the paper
of V. Shoup [71]. Later, in Chapter 5, we present a class of non-generic algo-
rithms which are specific to finite fields. These algorithms allow us to achieve
a lower complexity than O(

√
q); indeed, these algorithms achieve the lowest

complexities known.

31

32 CHAPTER 3. GENERIC DISCRETE LOGARITHM ALGORITHMS

3.1 Trial Exponentiation

Theorem 3.1.1. Trial Exponentiation
There exists a deterministic algorithm which solves the DLP in F∗q in time
O(q log(q)).

The algorithm proving this theorem is the immediately obvious method of
“trial and error”, also known as trial exponentiation. To find logα(β) the al-
gorithm successively raises α to various powers and compares the result to β,
exhaustively searching the space of possible logarithms Zq−1 until the correct
answer is found. This method is obviously correct and simple to implement for
any finite field, but is too inefficient to be used in any but the smallest fields.
For fields of cryptographic interest, it is completely inpractical. We mention it
only to place an upper bound on the difficulty of the DLP.

3.2 Shanks’ Baby-Step Giant-Step method

Theorem 3.2.1. Shanks’ Baby-Step Giant-Step Method

There exists a deterministic algorithm which solves the DLP in F∗q in time
O(
√

q − 1) using space O(
√

q − 1 log(q)).

The algorithm described by Theorem 3.2.1 is described by D. Knuth in [35],
where it is attributed to D. Shanks. No work on the method by Shanks appears
to have been published, and [35] is the standard reference in the literature. The
method is related to trial exponentiation, in that it requires the trialing of a
number of possible exponents, but the number of trials required is decreased.
This decrease in the number of trials is achieved at the expense of requiring the
storage of a several field elements; the algorithm is a time-space tradeoff.

Proof of Theorem 3.2.1:
Consider the following algorithm:

Algorithm 3.2.2. Shanks(Fq, α, β)

Input: A finite field Fq, a primitive element α of Fq and β ∈ Fq.
Output: logα(β).

1. m← d√q − 1e.
2. For i from 0 to m do:

(a) Compute αi and store the pair (i, αi).

3. For j from 0 to m do:

(a) Compute βα−jm and search the stored pairs for a pair (i, αi) such
that βα−jm = αi.

(b) If such a pair is found:

i. Return i + jm.

3.2. SHANKS’ BABY-STEP GIANT-STEP METHOD 33

The correctness of this algorithm is based upon the observation that any
element x of Zq−1, including the sought logarithm, may be written as x =
i + jmq − 1, where both i, j < m. To see this, simply set j = bx/mc and then
i = x − jm. It is clear that j < m since x ≤ q − 1 and so x/

√
q − 1 ≤ √q − 1.

It is clear by construction that i < m.
The algorithm precomputes αi for all i in this range and then searches for a

value of j such that βα−jm = αi. When this occurs it is clear that β = αi+jm

and hence that logα(β) = i + jm.
Considering the time complexity of this algorithm in the same manner as

elsewhere in the thesis, the only contribution to the running time of this algo-
rithm is that required to perform the computation of the powers of α. Comput-
ing αi for i = 0, 1, . . . ,m− 1 requires O(

√
q − 1) multiplications and computing

βα−jm for j = 0, 1, . . . , m − 1 requires the same, giving a total complexity of
O(
√

q − 1). However, one could consider this analysis too simplistic, as it does
not account for the time required to search the list of ordered pairs for the de-
sired match. A discussion of different techniques for searching lists is beyond
the scope of this thesis. The interested reader may see [35] for such a discussion.
For our purposes, we consider it reasonable to expect that the time required for
searching is dominated by the time required for computations and give the time
complexity as O(

√
q − 1).

The space complexity of Shanks’s method is determined by the space re-
quired to store the m ordered pairs. The components of each pair are an integer
< m < q and an element of Fq, both of which can be stored using log(q) bits.
Thus the space required is O(

√
q − 1 log q).

¤

Example

We demonstrate the use of Shanks’ Baby-Step Giant-Step method by solving a
DLP in the group F∗257 ∼= Z∗257, which has order n = φ(257) = 256 (since 257 is
prime). The element g = 5 is a generator of this group and we shall compute
the base 5 logarithm of the element h = 116.

The method begins by computing and storing the values (i, 5i) for 0 ≤ i < 16.
These computed pairs are shown in Table 3.1.

i 0 1 2 3 4 5 6 7
5i (mod 257) 1 5 25 125 111 41 205 254

i 8 9 10 11 12 13 14 15
5i (mod 257) 242 182 139 181 134 156 9 45

Table 3.1: Table of values (i, gi) for BSGS computation of log5(116) in F∗257.

Now we compute 116 × 5−16j for 0 ≤ j < 16 until a value is found which
ocurrs in the second row of Table 3.1. Observe that 103× 5 ≡ 1 (mod 257) and
so 5−16j = (5−1)16j = 10316j . Hence we compute:

116× 1030×16 ≡ 116 (mod 257), which is not in the table.
116× 1031×16 ≡ 157 (mod 257), which is not in the table.

34 CHAPTER 3. GENERIC DISCRETE LOGARITHM ALGORITHMS

116× 1032×16 ≡ 228 (mod 257), which is not in the table.
116× 1033×16 ≡ 25 (mod 257), which is in table entry (2, 52).

So we have i = 2, j = 3 and the method gives log5(116) = 2 + 3 × 16 = 50.
We can then verify that, indeed, 550 ≡ 116 (mod 257).

3.3 Pollard’s ρ-method

Theorem 3.3.1. Pollard’s ρ-method

There exists a probabilistic algorithm which solves the DLP in F∗q with time
complexity O(

√
q − 1) and space complexity O(log(q)).

The algorithm which constitutes proof of Theorem 3.3.1 is due to J. Pollard
from 1978 [60] and is known as Pollard’s ρ-method 1. It is certainly the most well
known generic discrete logarithm algorithm and is the most efficient in terms of
time and space. It uses a “collision” in the terms of a pseudorandom sequence
of field elements to establish a linear recurrence for the desired logarithm. This
recurrence can then be solved using any of the usual methods, such as the
extended Euclidean algorithm. The time complexity of the algorithm is derived
from an assumption about the behaviour of the pseudorandom sequence, which
is supported by heuristic observation.

The following proposition introduces the pseudorandom sequence considered
by the method and also states the assumption about its behaviour which we will
use in our later complexity analysis.

Proposition 3.3.2. Pseudorandom Sequences in F∗q

Let {S0, S1, S2} be a partition of F∗q , with S0, S1, S2 ⊂ F∗q of roughly equal
cardinality, and define the map f : F∗q → F∗q according to:

f(x) =





βxi if xi ∈ S0,

xi
2 if xi ∈ S1,

αxi if xi ∈ S2.

(3.1)

Then the sequence of field elements {xi}∞i=0 defined by x0 = 1, xi+1 = f(xi),
i = 1, 2, . . . has the statistical properties of a sequence of field elements selected
independently and at random from a uniform probability distribution over F∗q .

We note now that the sequence {xi} implicitly defines two sequences of inte-
gers, {ai} and {bi}, whose terms are the powers of α and β in the factorisation
of the corresponding terms of {xi}. That is, {ai} and {bi} are defined such that
xi = αaiβbi , so that a0 = b0 = 0 and:

ai+1 = fa(ai) =





ai if xi ∈ S0,

2ai (mod n) if xi ∈ S1,

ai + 1 (mod n) if xi ∈ S2,

(3.2)

1J. Pollard has developed an algorithm for factorising integers which is very similar to his
algorithm for computing logarithms, to the extent that they share the ρ name. The name
“Pollard(’s) ρ-method” seems to refer more often in the literature to the factorisation algo-
rithm. While considered unnecessary in the context of this thesis, the qualification “Pollard(’s)
ρ-method for logarithms” is seen often, and should probably be used in general.

3.3. POLLARD’S ρ-METHOD 35

bi+1 = fb(bi) =





bi + 1 (mod n) if xi ∈ S0,

2bi (mod n) if xi ∈ S1,

bi if xi ∈ S2.

(3.3)

Since F∗q is finite, it is an obvious consequence of the well known “pigeon
hole principle” that amongst the first q terms of this sequence, at least one field
element must occur twice. We term this a collision in the sequence. Since each
term in the sequence is entirely determined by the previous term, it follows that
after the first collision the sequence becomes periodic. The name “ρ-method”
arises from a visualisation of this; the ‘tail’ of the ρ represents the segment of
{xi} before the first collision occurs, and the ‘loop’ of the ρ represents the cycle
which the sequence repeats thereafter.

We now find the expected number of sequence terms which must be generated
until a collision occurrs, using the assumption of Proposition 3.3.2.

Lemma 3.3.3. Birthday Paradox Result

Let S be a finite set with |S| = n. Suppose we successively select elements
of S at random, replacing the chosen element after each selection, such that the
selections are independent and at each selection each element is equally likely.
Let Xn be the discrete random variable corresponding to the number of elements
which must be selected until some element is selected for the second time. Then:

lim
n→∞

E(Xn) '
√

πn/2

Proof: We use the fact that, for a discrete random variable X taking non-
negative integer values less than n:

E(X) =
n∑

i=1

P (X ≥ i). (3.4)

To see this, consider expanding the sum above to get:

n∑

i=1

P (X ≥ i) =
n∑

i=1




n∑

j=i

P (X = j)


 .

Observe that only one P (X = 1) term is contributed by the innermost sum, in
the case i = 1. Similarly, two P (X = 2) terms are contributed, when i = 1, 2.
Continuing in this manner we see that there are a total of k P (X = k) terms
and so:

n∑

i=1

P (X ≥ i) =
n∑

i=0

iP (X = i),

which is E(X) by definiton.
We now use a Taylor series to find an approximation to P (Xn ≥ i), observing

that this is the probability that no collision occurs among the first i−1 selections.
Suppose the first selection has been made. The probability that a second

selection is different is (1−1/n). The probability that the third choice is different
to the first two is (1 − 2/n). Continuing in this manner and recalling that

36 CHAPTER 3. GENERIC DISCRETE LOGARITHM ALGORITHMS

the selections are independent, we see that the probability that the first i − 1
selections are all different is:

P (Xn ≥ i) =
i−2∏

j=0

(1− j

n
). (3.5)

We now find an approximation to P (Xn ≥ i) which is valid when n is “large”.
Recall that the Taylor series expansion of ex is:

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .

Thus we have:

e−j/n = 1− j

n
+

j2

2!n2
− j3

3!n3
+ . . .

= 1− j

n
+ O

((
j

n

)2
)

.

If n is “large” then 2nd and higher order terms above are “small” and we may
approximate (1− j/n) well by e−j/n and so (3.5) becomes:

P (Xn ≥ i) '
i−2∏

j=0

e−j/n = e−(i−1)(i−2)/2n,

where we have used the well-known result
∑i

0=1 j = i(i + 1)/2. Thus, using
(3.4), we have for large n:

E(Xn) =
n∑

i=1

P (Xn ≥ i) '
n∑

i=1

e−(i−1)(i−2)/2n '
n∑

i=0

e−i2/2n.

We now approximate this final sum by a standard integral, giving:

E(Xn) '
∫ n

0

e−x2/2ndx,

and hence:

lim
n→∞

E(Xn) =
∫ ∞

0

e−x2/2ndx =
√

πn/2 ' 1.23
√

n,

the improper definite integral being well-known.

¤

This result is sometimes known as the “birthday paradox”, because it es-
tablishes the surprising (though not actually paradoxical) result that, assuming
people’s birthdays ocurr as random and independent selections from a set of
365 possible days, each equally likely, then only around 23 people need to be
present in a room before we expect two of them to share a birthday.

As a final consideration before presenting Pollard’s ρ-method, we discuss a
manner in which a collision in a sequence can be efficiently found. The idea
behind the following lemma is known as “Floyd’s cycle-finding algorithm”. It
was developed by R. Floyd in 1967.

3.3. POLLARD’S ρ-METHOD 37

Lemma 3.3.4. Floyd’s Cycle-Finding Algorithm

Let {xi}∞i=1 be an “eventually periodic” sequence, i.e. suppose there exists
an integer λ such that {xi}∞i=λ is periodic, with period say µ. For example,
{1, 2, 3, 4, 5, 4, 5, 4, 5, . . .} is “eventually periodic” with λ = 4 and µ = 2. Then
the two sequences {xi}∞i=1 and {x2i}∞i=1 collide after at least λ and at most λ+µ
terms.

Proof : First we show that the two sequences do in fact collide. Once i ≥ λ,
the terms of {xi} are in the periodic part of the sequence, so xi = xi+kµ for any
integer k. When i is a multiple of µ, say kµ then x2i = x2kµ = xkµ+kµ = xkµ =
xi and a collision has occurred.

We now show that the collision occurs after at least λ and at most λ + µ
terms. The lower bound is clear: the first λ − 1 terms of {xi} are in the non-
periodic part of the sequence. If the value taken by each of these terms occurs
exactly once in the entire sequence (as is the case in our earlier example), then
clearly xi and x21 will always be distinct. To establish the upper bound, note
that a collision occurrs as soon as i is a multiple of µ. Suppose λ > µ, say:

λ = kµ + l, with l < µ.

Then the first multiple of µ after λ is:

λ + µ− l < λ + µ.

If λ = µ, then the collision clearly occurs after λ terms. Finally, if λ < µ, say:

µ = kλ + l, with l < λ,

then the first multiple of µ after λ is:

λ + (k − 1)λ + l < λ + µ.

¤

Pollard’s ρ-method applies this method of finding sequence collisions to the
sequence in F∗q generated by the function f given earlier.

We are now in a position to prove Theorem 3.3.1:
Proof of Theorem 3.3.1:
Consider Algorithm 3.3.5, PollardRho. This algorithm uses Floyd’s cycle-

finding algorithm to find a collision in the sequence of field elements defined by
the map f : F∗q → F∗q defined in (3.1). On each pass through the unconditional
loop, x1 is updated by f once (at step 3a) and x2 is updated by f twice (at step
3b), so that on the i-th pass through the loop x1 corresponds to the i-th term
in the sequence and x2 the 2i-th term. We update the variables a1, b1, a1, and
b2 in a similar way with the maps fa and fb. We are certain that there exists a
collision in the sequence generated by f , and so by Lemma 3.3.4 we know that
after some finite number of passes through the loop we will have x1 = x2. This
event is caught by the If statement.

38 CHAPTER 3. GENERIC DISCRETE LOGARITHM ALGORITHMS

Algorithm 3.3.5. PollardRho(Fq, S, α, β)

Input: A finite field Fq, a partition {S0, S1, S2} of F∗q , a primitive element α
of Fq and β ∈ Fq.
Output: logα(β).

1. x1, x2 ← 1.

2. a1, b1, a2, b2 ← 0.

3. Unconditionally do:

(a) x1 ← f(x1), a1 ← fa(a1), b1 ← fb(b1).

(b) x2 ← f(f(x2)), a2 ← fa(fa(a2),b2 ← fb(fb(b2)).

(c) If x1 = x2 do:

i. r ← b1 − b2 (mod q − 1).
ii. s← a1 − a2 (mod q − 1).
iii. If the congruence rx ≡ s (mod q − 1) is solvable do:

A. Solve the congruence rx ≡ s (mod q − 1).
B. Compute αx for all solutions x.
C. Return the x such that αx = β.

iv. Else do:
A. Set a1 and a2 to the same randomly selected value in Zq−1.
B. Set b1 and b2 to the same randomly selected value in Zq−1.
C. x1 ← αa1βb1 , x2 ← αa2βb2 .
D. Go to step 3.

Observe that at the time x1 = x2 and the algorithm enters the stage beneath
the If statement, the variables a1, b1, a2, and b2 are such that:

αa1βb1 = αa2βb2

⇒ βb1−b2 = αa2−a1

⇒ logα((βb1−b2) = logα(αa2−a1)
⇒ (b1 − b2) logα(β) ≡ a2 − a1 (mod q − 1).

So we can derive from our knowledge of a1, b1, a2, and b2 a linear congruence for
the logarithm of interest. This congruence may be solved for logα(β) using the
extended Euclidean algorithm under the usual conditions. If these conditions
are not met and the congruence has no solution, we may try again by restarting
the algorithm with x1 and x2 initialised to some equal but random starting
value distinct from 1. Eventually a useful congruence should be generated.

Once we have a solvable congruence, logα(β) will be among its solutions.
The set of solutions is typically small enough that trial exponentiation can
reveal the logarithm with minimal effort. This demonstrates the correctness of

3.3. POLLARD’S ρ-METHOD 39

the algorithm.
To establish the time complexity of the algorithm, recall from Lemma 3.3.4

that x1 and x2 will be equal after at most λ + µ passes through the uncon-
ditional loop. Under the assumption of Proposition 3.3.2, λ + µ is expected
to be O(

√
q − 1). Thus we must update the variables x1, a1, b1 and x2, a2, b2

a total of O(
√

q − 1) times. The updating of the ai and bi variables requires
modular multiplication of integers, which is exactly as expensive as updating
x1 and x2 if q is prime or less expensive if q is a prime power. So the time to
find the sequence collision is O(

√
q − 1). The solving of the linear recurrence

takes substantially less time than this, so O(
√

q − 1) is the running time of the
algorithm.

The space complexity of Pollard’s rho-method is trivially O(log q). No stor-
age is required other than the current value of (xi, ai, bi, x2i, a2i, b2i). In this
sense the Pollard ρ-method is a vast improvement upon Shanks’ Baby-step
Giant-step method. It has the same time complexity, but a vastly reduced
space complexity.

¤

Example

To demonstrate the use of the Pollard ρ-method we once again consider the
group F∗257, introduced in the example for Shanks’ Baby-Step Giant-Step method.
We again use the generator g = 5, but compute the logarithm of the element
h = 178. Our partition {S0, S1, S2} shall be:

S0 = {x ∈ Z∗257|x ≡ 1 (mod 3)},
S1 = {x ∈ Z∗257|x ≡ 0 (mod 3)},
S2 = {x ∈ Z∗257|x ≡ 2 (mod 3)},

(3.6)

as this partition is the simplest to implement in most computer programming
languages, and since it guarantees that the condition |S0| ' |S1| ' |S2| is
satisfied.

Applying the Pollard ρ-method to this problem produces the sequences
shown in Table 3.2.

We see that after 16 comparisons a collision between the sequences {xi}
and {x2i} has occurred, with x16 = x2×16 = 22. This is exactly the ex-
pected number of comparisons m = d√256e = d16e = 16. Using the values
of a16, b16, a2×16, b2×16 we establish the equation:

5817826 (mod 257) = 576178240 (mod 257),

from which we can deduce, in the manner described earlier, the linear con-
gruence:

42 log5(178) ≡ 68 (mod 256).

Since d = gcd(42, 256) = 2|68 we know that this congruence has 2 solutions
up to congruence modulo 256. Using the extended Euclidean algorithm we
determine these solutions and hence that:

40 CHAPTER 3. GENERIC DISCRETE LOGARITHM ALGORITHMS

i ai bi xi = gaihbi a2i b2i x2i = ga2ihb2i

0 0 0 1 0 0 1
1 0 1 178 0 2 73
2 0 2 73 0 6 176
3 0 3 144 1 7 127
4 0 6 176 1 9 19
5 1 6 109 2 10 205
6 1 7 127 2 12 59
7 1 8 247 4 12 190
8 1 9 19 8 26 22
9 1 10 41 8 28 64
10 2 10 205 16 58 117
11 2 11 253 33 116 83
12 2 12 59 35 116 19
13 3 12 38 36 117 205
14 4 12 190 36 119 59
15 4 13 153 38 119 190
16 8 26 22 76 240 22

Table 3.2: Steps in the Pollard ρ-method’s computation of log5(178) in F∗257

log5(183) ∈ {x ∈ Z256|42x ≡ 68 (mod 256)} = {26, 154}.
This set of possible logarithms is sufficiently small that trial exponentiation

can quickly reveal which element is the logarithm. In this case we see that
526 ≡ 178 (mod 257) and so log5(178) = 26.

Empirical Observations

The author has implemented Pollard’s ρ-method for multiplicative subgroups
of fields of prime order on a computer in the C programming language. The
code can be found in appendix section A.2. Empirical running times have been
recorded for using the algorithm to compute logarithms for various prime fields.
These times are tabulated in Table 3.3.

The prime field orders used were the first primes of size 20 bits, 24 bits, 28
bits, . . ., 64 bits. The computations were performed on a machine with a 2.0
GHz Intel R© Pentium R©-M Centrino R© processor and 1 GB of RAM, running the
NetBSD R© 3.0 operating system. The average running times were obtained by
consecutively computing 500 discrete logarithms in each field and dividing the
total time taken (obtained using the UNIX time command) by 500. The prob-
lems used randomly, independently selected pairs of elements and generators,
which were precomputed so as not to affect the running times.

Modifications

We briefly mention and give reference to three modifications to the Pollard
ρ-method which may be of interest.

3.4. POLLARD’S λ-METHOD (KANGAROO METHOD) 41

Prime field order Average running time
524309 0.00232 s
8388617 0.00601 s

134217757 0.02024 s
2147483659 0.07798 s
34359738421 0.47566 s
549755813911 1.76512 s
8796093022237 5.30934 s

140737488355333 33.10700 s
2251799813685269 126.04900 s
36028797018963971 453.96400 s
576460752303423619 2171.91200 s

Table 3.3: Empirical running times for Pollard ρ-method in prime order fields

1. The iterating function f : Fq → Fq used by Pollard to produce the pseu-
dorandom sequence is not optimal and the performance of the algorithm
actually falls short of that predicted by our analysis, which assumed that
f acted like a uniformly distributed random function. In 2001 E. Teske
gave an alternative method of sequence generation [74] which gives per-
formance matching that predicted by our analysis. Teske suggests that
this modification improves the algorithm’s performance by about 20%.

2. Floyd’s cycle detecting algorithm is not optimal. In 1980, R. Brent pre-
sented an improvement [11] to Pollard’s ρ-method for factorising integers
[59], which is conceptually similar to his ρ-method for computing dis-
crete logarithms and also used Floyd’s cycle detecting algorithm. Brent’s
improvement replaced Floyd’s algorithm with an alternative, and this al-
ternative can just as well replace Floyd’s algorithm in the ρ-method for
logarithms. In 1984, H. Lenstra and C. Schnorr also presented an inte-
ger factorisation algorithm [43] which included a modification of Pollard’s
ρ-method, again with an improved cycle-detection method which may be
adapted to the ρ-method for logarithms.

3. In 1999, P. van Oorschot and M. Wiener published a paper considering
the parallelisation of collision searches [77], which have many applications
in cryptography including, but not limited to, discrete logarithm com-
putations. This paper explicitly considers the parallelisation of Pollard’s
ρ-method to an arbitrary number of processors and shows that a near
linear speedup can be achieved.

3.4 Pollard’s λ-method (Kangaroo Method)

Theorem 3.4.1. Pollard’s λ-method

There exists a deterministic algorithm which, given as input a finite field Fq,
a primitive element α of F∗q , β ∈ F∗q and two integers a, b ∈ Zq−1, computes
logα(β) in F∗q if a ≤ logα(β) ≤ b, in time O(

√
q − 1) and space O(log q).

42 CHAPTER 3. GENERIC DISCRETE LOGARITHM ALGORITHMS

The algorithm proving this theorem is known as the Pollard λ-method, and
was proposed by J. Pollard at the same time as his ρ-method [60]. Like the
ρ-method, the λ-method is based upon finding sequence collisions and the algo-
rithm’s time complexity is estimated using the birthday paradox result Lemma
3.3.3. An explanation of the name “λ-method” will be given later in this section.
It is noted that this method is also sometimes called the “(Pollard) Kangaroo
Method”. This is because Pollard’s original description of the algorithm is
couched in a perculiar analogy involving the trapping of a “wild” kangaroo by
a “tame” one.

The λ-method considers two sequences {xi} and {yi} of elements in F∗q which
are thought of as the locations of two kangaroos which travel throughout the
field in a series of pseudorandom “bounds”. The length of each bound is a
function of the take-off position. Associated with these two sequences are two
other sequences {di} and {d′i}, which are thought of as the readings of “distance
recorders” carried by the kangaroos, which record the length of each bound.
One kangaroo is considered to be wild, the other tame. It is the task of the
tame kangaroo to capture the wild kangaroo in a trap. The tame kangaroo
begins at a particular starting position (field element) and then completes some
number N of bounds, at which point it sets a trap. The wild kangaroo begins
at an unknown starting position (field element), corresponding to the discrete
logarithm we wish to compute. If the wild kangaroo lands after any bound on
a position previously occupied by the tame kangaroo, then it will follow the
tame kangaroo’s path to the trap. Once the wild kangaroo has been trapped,
a comparison of the distance recorders on each kangaroo together with our
knowledge of the tame kangaroo’s starting point will enable us to determine the
wild kangaroo’s starting point and hence the discrete logarithm. The name “λ-
method” arises from a visualisation of this. The two kangaroos initially travel
along two distinct paths, represented by the two “legs” of the lower half of
the λ. Eventually the kangaroos collide and their paths coincide forever after,
represented by the single “tip” of the λ.

We represent this rather fanciful description mathematically as follows. Let
the sequence {xi} of field elements correspond to the position of the tame kanga-
roo. We begin this sequence at x0 = αB , a field element with a known logarithm.
The sequence {yi} then corresponds to the position of the wild kangaroo. We
begin this sequence at y0 = β, a field element with an unknown logarithm.
Subsequent terms of both sequences are determined by the same rule (as both
kangaroos have identical jumping behaviour):

zi+1 = αf(zi)zi for z = y, x. (3.7)

The function f is a pseudorandom map f : F∗q :→ S, where S is a set of integers.
f(α) is the length of the bound taken by a kangaroo which takes off from α.
We see now that the length of a bound is equal to the difference in the discrete
logarithm of the field elements which correspond to the bound’s points of take
off and landing.

The distance recorder sequences are defined as follows. The sequence {di}
records the total distance travelled by the tame kangaroo after the i-th bound
and the sequence {d′i} does the same for the wild kangaroo. We set d0 = d′0 = 0

3.4. POLLARD’S λ-METHOD (KANGAROO METHOD) 43

and then for i = 1, 2, . . . we have:

di =
i∑

j=0

f(xj) and d′i =
i∑

j=0

f(yj).

Note that from this definition we have:

xi = αB+di and yi = βαd′i .

We begin by choosing a number of bounds N for the tame kangaroo to com-
plete. We compute and store {x0, x1, . . . , xN} and compute {d0, d1, . . . , dN},
storing only dN . We then consider the path of the wild kangaroo. We compute
successive terms of {yi} and {d′i} until either:

1. yj = xN for some integer j, at which point capture has occurred, or

2. d′j > B −A + dN , at which point the wild kangaroo has travelled further
from the tame kangaroo’s starting point than the tame kangaroo did and
hence has necessarily avoided the trap.

If capture has occurred with yj = xN , then we have:

xN = yj ⇒ αB+dN = βαd′j ⇒ β = αB+dN−d′j ,

and hence logα(β) ≡ B + dN − d′j (mod q − 1). If capture does not ocurr, the
method has failed and we must start again with a different choice of f and/or
of S and continue to do so until capture occurs.

We now prove Theorem 3.4.1.
Proof of Theorem 3.4.1:
Consider Algorithm 3.4.2, PollardLambda. This algorithm implements

the kangaroo catching ideas discussed above, from which its correctness fol-
lows. It remains to show that the claimed complexities are satisfied. Since
the mapping f : F∗q ← S is pseudorandom, the movement of the kangaroos
through the field is also pseudorandom. By Lemma 3.3.3, we must randomly
select O(

√
q − 1) elements from F∗q before we expect one to have been chosen

twice. Since we have set N = b√q − 1c, the tame kangaroo occupies O(
√

q − 1)
randomly selected points in F∗q . We expect that very few bounds by the wild
kangaroo, corresponding to the random selection of more points in F∗q , must
ocurr before we see a collision and the wild kangaroo lands on a point pre-
viously occupied by the tame kangaroo. Once this occurs, the wild kangaroo
must make at the very most N further bounds to land on the trap. Thus the
total number of bounds completed by both kangaroos is 2N plus the “very few”
bounds required before the collision ocurrs. Not counting these very few bounds
gives us a total of 2N = O(

√
q − 1) bounds. Implementing each bound requires

multiplying a field element by a power of α. If we have these |S| powers precom-
puted then this is simply a field multiplication. O(

√
q − 1) filed multiplications

gives the algorithm a time complexity of O(
√

q − 1).
At any stage of the algorithm, all that we have stored is the position of

a kangaroo, a field element requiring O(log(q)) storage, and the value of a
kangaroo’s distance recorder, an integer in Zq−1 also requiring O(log(q)). This
proves the claimed space complexity.

¤

44 CHAPTER 3. GENERIC DISCRETE LOGARITHM ALGORITHMS

Algorithm 3.4.2. PollardLambda(Fq, α, β,A, B, S, f)

Input: A finite field Fq, a primitive element α of Fq, β ∈ Fq, integers
A,B ∈ Zq−1 such that A ≤ log(α)(β) ≤ B, a set of integer “jump lengths” S
and a pseudorandom function f : F∗q → S.
Output: logα(β).

1. N ← b√q − 1c.
2. i← 0, xi ← αB , di ← 0.

3. While i < N do:

(a) xi ← αf(xi)xi.

(b) di ← di + f(xi).

(c) i← i + 1.

4. j ← 0, yj ← β, d′j ← 0.

5. textbfWhile d′j < B −A + dN do:

(a) yj ← αf(yj)yj .

(b) d′i ← d′i + f(yi). If yj = xN do:

i. Return B + dN − d′j (mod q − 1).

6. Pick new S and/or f and go to Step 2.

Example

As an example of Pollard’s λ-method, we again consider the computation of
log5(178) in F257. This logarithm was computed in our example of Pollard’s
ρ-method earlier (see 3.3) and found to be 26. Knowing this, we use [0, 50] as
our interval [A,B]. For our set of bound lengths S we take:

S = {s1 = 1, s2 = 2, s3 = 4, s4 = 16},
with the pseudorandom function f defined by f(α) = si if α ≡ i (mod 4). We
allow our tame kangaroo to complete N = d√256e = 16 bounds. We release the
tame kangaroo from the position x0 = 550 ≡ 116 (mod 257) and observe the
subsequent movement through the field shown in Table 3.4.

We then begin the wild kangaroo at the position y0 = 178 and observe the
movement shown in table 3.5.

We see that after 12 bounds, the wild kangaroo occupies position y12 = 69,
which was previously occupied by the tame kangaroo, with x8 = 69. This
collision is marked in bold on the tables above. Due to the kangaroos sharing
jumping behaviour, the wild kangaroo now follows the tame kangaroo’s path
until it reaches the trap placed at x16. As shown, this ocurrs at y20.

We compute the desired logarithm by observing:

x16 = y20 ⇒ α50+d16 = βαd′20 ⇒ α50+71 = βα95 ⇒ β = α50+71−95 = α26.

3.4. POLLARD’S λ-METHOD (KANGAROO METHOD) 45

i 1 2 3 4 5 6 6 8
xi 66 130 38 106 201 142 85 69
di 1 5 9 13 17 19 23 25
i 9 10 11 12 13 14 15 16
xi 183 82 107 194 203 39 186 86
di 27 35 39 47 51 59 67 71

Table 3.4: Tame kangaroo movement in the Pollard λ-method’s computation of
log5(178) in F∗257.

i 1 2 3 4 5 6 6 8
yi 226 157 70 60 43 126 108 26
d′i 4 8 10 14 15 23 27 28
i 9 10 11 12 13 14 · · · 20
yi 59 143 168 69 183 82 · · · 86
d′i 32 40 48 49 51 59 · · · 95

Table 3.5: Wild kangaroo movement in the Pollard λ-method’s computation of
log5(178) in F∗257.

So Pollard’s λ-method has given us log5(178) = 26 in F∗257, in agreement with
Pollard’s ρ-method.

Parallelisation

The Pollard λ-method is well suited to parallelisation. We consider briefly
consider three examples of this.

1. An immediately obvious way to parallelise the λ-method is to have each of
the P processors run the algorithm unmodified, each searching a distinct
subinterval of [A,B] of length (B−A)/P . This clearly achieves a running
time of O(

√
(B −A)/P). While this is indeed an improvement, much

better improvements can be achieved using the following two methods.

2. In the same paper in which they considered parallelisation of Pollard’s
ρ-method, van Oorschot and Wiener [77] considered parallelisation of the
λ-method. The approaches to parallelising both of Pollard’s methods are
essentially identical. Again we see that a near linear speedup can be
achieved.

3. In 2000, Pollard published a paper [61] in which he revisited the ρ- and
λ-methods, detailing improvements which had been published by other
authors since his first paper [60] and improving the complexity analysis of
the λ-method. In this paper he presents a modification of van Oorschot
and Wiener’s parallelisation of the λ-method which eliminates a minor
problem, in which “useless” collisions between sequences would occasion-
ally ocurr .

46 CHAPTER 3. GENERIC DISCRETE LOGARITHM ALGORITHMS

3.5 Pohlig-Hellman Method

Theorem 3.5.1. Pohlig Hellman Algorithm

There exists a deterministic algorithm which solves the DLP in F∗q in time
O(
√

p), where p is the greatest prime divisor of q − 1.

The basis for the this algorithm, which was proposed by M. Hellman and
S. Pohlig2 in 1978 [57], is the Chinese remainder theorem. Suppose we wish to
compute logarithms in F∗q and the order of this group q − 1 factors into prime
powers as q − 1 =

∏k
i=1 pei

i , where the pi are distinct primes and the ei are
natural exponents. Then if we can compute:

x1 ≡ logα(β) (mod pe1
1),

x2 ≡ logα(β) (mod pe2
2),

...
xk ≡ logα(β) (mod pek

k),

the Chinese remainder theorem will allow us to recover, from x1, x2, . . . , xk,
logα(β) modulo

∏k
i=1 pei

i = q − 1, i.e. to recover logα(β) exactly.
The Pohlig-Hellman algorithm finds the above xi via the following result,

which shows that computing the xi is equivalent to solving a DLP in cyclic
subgroup of F∗q (recall that the DLP is well posed in any finite cyclic groups).
In this sense, the method reduces one DLP to several “smaller” DLPs. For this
reason, the method is sometimes called the Pohlig-Hellman reduction.

Lemma 3.5.2. Pohlig Hellman Reduction

Let x ≡ logα(β) (mod pe). Write x in the form:

x = c0 + c1p + c2p
2 + . . . ce−1p

e−1.

Then the coefficients ci satisfy:

ci = logα(βi),

where α = α(q−1)/p and βi = (βγ−1
i)n/pi+1

, with γi = αc0+c1p+...+ci−1pi−1
, where

c−1 is taken to be 0.

Proof : We note that α is a field element of order p, as αp = α(q−1)/p =
αq−1 = 1. Consequently, at any stage we may reduce any exponent of α modulo
p. We will do this several times in what follows.

2It is generally acknowledged that the same method was discovered earlier by R. Silver, but
this work was not published. Pohlig and Hellman’s discovery was independent. The method
is sometimes referred to as the “Pohlig-Hellman-Silver” method for this reason.

3.5. POHLIG-HELLMAN METHOD 47

Observe:

βi = (βγ−1
i)(q−1)/pi+1

= (αlogα(β)−c0−c1p−...−ci−1pi−1
)(q−1)/pi+1

= (αxi−c0−c1p−...−ci−1pi−1
)(q−1)/pi+1

= (αcip
i+...+ce−1pe−1

)(q−1)/pi+1

= (α(q−1)/pi+1
)cip

i+...+ce−1pe−1

= (α(q−1)/p)ci+...+ce−1pe−1−i

= αci

from which the result follows.

¤

We may use this result to construct an algorithm which computes logα(β)
by solving a series of smaller DLPs. This proves Theorem 3.5.1:

Proof of Theorem 3.5.1:
Consider the following algorithm:

Algorithm 3.5.3. PohligHellman

Input: A finite field Fq, the canonical factorisation of q−1 =
∏k

i=1 pei
i , a prim-

itive element α of Fq and β ∈ Fq.
Output: logα(β).

1. For i from 1 to k do:

(a) p← pi, e← ei.

(b) α← α(q−1)/p.

(c) γ ← 1.

(d) For j from 0 to e− 1 do:

i. α← α(q−1)/p.
ii. γ ← γαcj−1pj−1

.
iii. β ← (βγ−1)(q−1)/pj+1

.
iv. cj ← logα(β).

(e) xi ← c0 + c1p + c2p
2 + . . . + ce−1p

e−1.

2. Recover logα(β) from x1, x2, . . . , xk using the Chinese remainder theorem.

3. Return logα(β).

The correctness of this algorithm follows from Lemma 3.5.2. It is easy to
observe that on the j-th iteration of the For loop, γ is equal to γj as defined in
the lemma, and β = βj . Thus cj is indeed given by the computed logarithm.

The time required to reassemble logα(β) from the xi is dominated by the
time required to solve the sub-DLPs. The largest of these sub-DLPs is posed in
a subgroup of F∗q of order p, where p is the largest prime divisor of q− 1. If this

48 CHAPTER 3. GENERIC DISCRETE LOGARITHM ALGORITHMS

sub-DLP is solved using Shanks’ Baby-Step Giant-Step method (see Section 3.2)
or Pollard’s ρ-method (see Section 3.3) then the time required will be O(

√
p).

Note that here we have used the fact that these are generic discrete logarithm
algorithms, since the subgroups of F∗q in which the sub-DLPs are posed are not
the multiplicative groups of finite fields.

¤

For large finite fields, the extra computational effort required to exploit
Pohlig-Hellman reduction is small compared to that required to solve the largest
sub-DLP. If we solve the sub-DLPs using one of the generic DLP algorithms of
this chapter, say Shanks’ Baby-Step Giant-Step method or Pollard’s ρ-method,
the DLP in F∗q can be solved in time O(

√
p), where p is the largest prime

divisor of q − 1. In light of this, the manner in which q − 1 factorises is of
extreme importance in the implementation of cryptography. For a cryptographic
primitive based on the infeasibility of the DLP in Fq to be infeasible, q must not
only be large, but must be chosen such that q−1 has as many large prime divisors
as possible, so that the sub-DLPs resulting from a Pohlig-Hellman reduction are
still challenging.

We note that in the case of fields F2n of characteristic 2, it is possible to
choose n so that 2n − 1 is in fact a prime, in which case the Pohlig-Hellman
reduction is of absolutely no benefit to an attacker. A prime number of the form
2n − 1 is known as a Mersenne prime. Mersenne primes have been well studied
and are actively searched for. As of September, 2006, a total of 44 Mersenne
primes are known, many of them suitable for use in cryptography. For example,
choosing n = 1279, n = 2203, or n = 2281 makes F2n large enough for modern
cryptographic purposes and also makes 2n − 1 a Mersenne prime. For fields of
odd characteristic, it is never possible for q−1 to be a prime, as q is always odd,
hence q − 1 is even and so divisible by 2. However, there are still choices of q
which minimise the usefullness of the Pohlig-Hellman reduction. For instance,
there exist prime numbers p known as Sophie Germaine primes, which have
the property that 2p + 1 is also a prime. The corresponding primes 2p + 1 are
sometimes called safe primes, since if p is large and we set q = 2p + 1, then
Fq is a large finite field and q − 1 = 2p has p as a large prime divisor, making
DLP-based cryptography in Fq safe from Pohlig-Hellman attacks. More details
regarding Mersenne and Sophie Germaine primes can be found in the book by
Ribenboim [63].

Chapter 4

Factorisation of
Polynomials over Finite
Fields

4.1 Introduction and Motivation

In this chapter we momentarily divert our attention from the computation of
discrete logarithms to consider the computational problem of factoring polyno-
mials over finite fields. While this problem has many applications in various
areas of mathematics, and is interesting in its own right, our motivation for
considering polynomial factoring is its applicability to a certain class of discrete
logarithm algorithms which we consider in the next chapter.

It is well known that any polynomial over a finite field may be uniquely
factored into a product of polynomials irreducible over that field. We term
this the canonical factorisation of the polynomial, and it is this factorisation
which we are interested in computing. In this chapter, if we speak of “factor-
ing” a polynomial with no further qualification, we refer to finding its canonical
factorisation. Any non-trivial factorisation of a polynomial which is not the
canonical factorisation shall be referred to as a partial factorisation. We will see
that partial factorisations are useful for reducing the problem of factoring an
arbitrary polynomial to that of factoring a polynomial with some special form,
whose properties we may exploit. In this chapter we present two partial factori-
sations and algorithms for computing them, and two algorithms for factoring
polynomials of a certain form. Taken together, the algorithms presented here
enable us to factor an arbitrary polynomial over any finite field.

We concern ourselves with the factorisation of f(x) ∈ Fq[x], where f(x) is
a monic polynomial of degree n. We take f(x) to have m distinct irreducible
factors, and we denote the canonical factorisation of f(x) by:

f(x) =
m−1∏

i=0

pi(x)ei , (4.1)

where each pi(x) is irreducible over Fq with degree ni (so that n =
∑m−1

i=0 eini)
and each ei ∈ N. Note that the restriction that f(x) be monic causes no loss of

49

50 CHAPTER 4. FACTORISATION OF POLYNOMIALS...

generality; given a non-monic polynomial f(x) with leading coefficient α 6= 1,
we may factor α−1f(x), which is monic, and then include an extra irreducible
factor of α.

4.2 Some Partial Factorisations

All commonly used modern polynomial factoring algorithms work by first com-
puting a simple partial factorisation of the relevant polynomial f(x), say f(x) =
f1(x)f2(x) . . . fk(x), where k < n. It is clear that if we can factor each fi(x)
then we can factor f(x). The partial factorisations used are chosen so that
the polynomials fi(x) share some particular property which admits their be-
ing factored in an algorithmic manner. Two such partial factorisations are the
“squarefree factorisation” and the “distinct degree factorisation”. We describe
both of these factorisations in this section, give simple, deterministic algorithms
for computing them and analyse their complexity.

4.2.1 Squarefree Factorisation

The central concept of this subsection is that of a “squarefree polynomial” over
a finite field, which we define as follows in analogy to the number theoretic
concept of a squarefree integer:

Definition 4.2.1. Squarefree Polynomial

A polynomial f(x) ∈ Fq[x] is called a squarefree polynomial if its canonical
factorisation (4.1) satisfies ei = 1 for i = 1, 2, . . . , n. If a polynomial f(x) is not
squarefree, then we call the highest degree squarefree polynomial dividing f(x)
the squarefree part of f(x).

In Section 4.3 we will see a polynomial time (for fixed q or n), deterministic
algorithm for factoring any squarefree polynomial, known as Berlekamp’s algo-
rithm. This algorithm can in fact be used to factor arbitrary polynomials by
virtue of the following theorem, which is the main result of this subsection:

Theorem 4.2.2. Squarefree Factorisation

There exists an algorithm which, given as input a polynomial f(x) ∈ Fq[x],
returns as output a number of polynomials f1(x), f2(x), . . . , fk(x) such that each
fi(x) is squarefree and f(x) =

∏k
i=1 fi(x), using O(n3) multiplications in Fq.

The partial factorisation of f(x) given in Theorem 4.2.2 is called a squarefree
factorisation. To prove Theorem 4.2.2, we require the following definition and
some associated lemmas.

Definition 4.2.3. Formal Derivative of a Polynomial

If f(x) has coefficients:

f(x) =
n∑

i=0

aix
i = a0 + a1x + a2x

2 + . . . + anxn,

4.2. SOME PARTIAL FACTORISATIONS 51

then the formal derivative of f(x) is the polynomial denoted f ′(x) of degree
n− 1 given by:

f ′(x) =
n∑

i=1

iaix
i−1 = a1 + 2a2x + . . . + nanxn−1.

The reader may verify that, even though the formal derivative of a polyno-
mial is an explicit definition rather than the consequence of some general notion
of a “derivative”, some familiar results from differential calculus still hold for
the formal derivative. In particular, for f(x), g(x) ∈ Fq[x], the formal derivative
obeys the power rule:

(f(x)e)′ = ef(x)e−1f ′(x),

and the product rule:

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

We use this fact to prove the following two lemmas. In these lemmas, if g(x)e

divides f(x) for some integer e > 1, then g(x) is called a repeated factor of f(x)
with exponent e. Thus, a squarefree polynomial is a polynomial which contains
no repeated factors.

Lemma 4.2.4. If g(x) is a repeated factor of f(x) with exponent e then it is
also a (possibly repeated) factor of f ′(x) with exponent e′ = e− 1.

Proof: Set h(x) = f(x)/g(x)e, so that f(x) = g(x)eh(x). Then, using the
power rule and product rule:

f ′(x) = eg(x)e−1g′(x)h(x) + g(x)eh′(x)

= g(x)e−1 (eg′(x)h(x) + g(x)h′(x)) .

¤

Corollary 4.2.5. If f(x) ∈ Fq[x], the polynomial f(x)/ gcd(f(x), f ′(x)) is
squarefree.

Proof: Suppose f(x) has repeated irreducible factors qi(x) with respective
exponents ei. By Lemma 4.2.4 each qi(x) is a factor of f ′(x) with exponent
ei − 1, i.e.:

f(x) =

(
k∏

i=0

qi(x)ei

)
h1(x) and f ′(x) =

(
k∏

i=0

qi(x)ei−1

)
h2(x),

where h1(x) and h2(x) are the squarefree parts of f(x) and f ′(x), respectively.
Hence:

gcd(f(x), f ′(x)) =

(
k∏

i=0

qi(x)e1−1

)
gcd(h1(x), h2(x))

and so

f(x)/ gcd(f(x), f ′(x)) =

(
k∏

i=0

qi(x)

)
h1(x)

gcd(h1(x), h2(x))
.

52 CHAPTER 4. FACTORISATION OF POLYNOMIALS...

Since each qi(x) is irreducible, the bracketed term of the final equality is square-
free and since h1(x) is squarefree so too is the non-bracketed term. By the def-
inition of h1(x) these two terms are relatively prime and so their product must
also be squarefree.

¤

We note in advance a perculiarity whereby the above corollary may some-
times become trivial. If the polynomial f(x) is such that there exists a sec-
ond polynomial g(x) with f(x) = g(x)char(Fq), then by the power rule f ′(x) =
char(Fq)g(x)char(Fq)−1 = 0. In this case, gcd(f(x), f ′(x)) = f(x) and so
f(x)/ gcd(f(x), f ′(x)) = 1, which is trivially squarefree. We may be able to
find a non-trivial factor of f(x) in this case by computing gcd(g(x), g′(x)).

We are now in a position to prove Theorem 4.2.2.
Proof of Theorem 4.2.2: Consider the following algorithm:

Algorithm 4.2.6. Squarefree

Input: A polynomial f(x) ∈ Fq[x].
Output: Squarefree polynomials f0(x), ..., fk(x), with f(x) =

∏k
i=0 fi(x).

1. i← 1.

2. While f(x) 6= 1, do:

(a) If gcd(f(x), f ′(x)) 6= 0 do:

i. fi(x)← f(x)/ gcd(f(x), f ′(x)).
ii. f(x)← f(x)/fi(x).
iii. i← i + 1.

(b) else do:

i. Set k to the highest power of char(Fq) which divides all powers
of x in f(x).

ii. g(x)← f(x)1/k.
iii. fi(x)← g(x)/ gcd(g(x), g′(x)).
iv. f(x)← f(x)/fi(x).
v. i← i + 1.

3. Return {f1(x), . . . , fi(x)}.

The correctness of this algorithm is fairly clear. If gcd(f(x), f ′(x)) 6= 0 then
the previously mentioned peculiarity does not ocurr and so by Corollary 4.2.5,
each fi(x) produced in this case is squarefree, as we require them to be. If
the GCD is equal to zero, then we find a factor g(x) of f(x) for which this is
not the case, and extract a squarefree factor of f(x) from g(x). It is also clear
that the fi(x) multiply to give f(x). On every pass through the While loop,
a factor of f(x) is removed, so eventually f(x) must be irreducible or a power
of an irreducible polynomial, in which case fi(x) = gcd(f(x), f ′(x)) = 1 and
f(x)/fi(x) = 1, at which point the algorithm terminates.

This algorithm requires at most n traversals of the While loop, since a
polynomial of degree n can clearly have no more than n squarefree factors. Each

4.2. SOME PARTIAL FACTORISATIONS 53

run through the loop requires the computation of one or possibly two formal
derivatives, a GCD and a polynomial division, with the inputs in each case
having degree at most n. Computing the derivative of a degree n polynomial
requires O(n) multiplications, while computing the GCD and the division each
require O(n2) and thus these steps dominate the time required in each loop.
The total cost of the algorithm is thus O(n3).

¤

An interesting paper by D. Panario [56], which studies the properties of
random polynomials over finite fields, contains the following unexpected result,
which we do not prove:

Theorem 4.2.7. Proportion of Polynomials which are Squarefree

If n ≥ 2, then the proportion of polynomials in Fq[x] of degree n which are
squarefree is 1− 1/q.

Proof: Omitted.
So, for large fields almost all polynomials will be squarefree, and even for

F2 there is a probability of 1/2 that a randomly selected polynomial will be
squarefree. Thus we expect that we will most often have no need to apply
Squarefree to f(x) and may proceed directly to an algorithm for factoring
squarefree polynomials, such as Berlekamp’s algorithm.

4.2.2 Distinct Degree Factorisation

In this subsection we discuss a partial factorisation which we can compute for
any polynomial and which will allow us to use an algorithm presented later to
find such a polynomial’s canonical factorisaiton.

An algorithm which computes the canonical factorisation of a polynomial
whose irreducible factors are all of equal degree is called an equal degree fac-
torisation algorithm. In Section 4.4 we will see a polynomial time, probabilistic
equal degree factorisation algorithm, known as the Cantor-Zassenhaus algo-
rithm. This algorithm can in fact be used to find the canonical factorisation of
an arbitrary polynomial by virtue of the following theorem, which is the main
result of this subsection:

Theorem 4.2.8. Distinct Degree Factorisation

There exists an algorithm which, given as input a squarefree polynomial
f(x) ∈ Fq[x], returns as output n polynomials f1(x), f2(x), . . . , fn(x) such that
f(x) =

∏k
i=1 fi(x) and the irreducible factors of fi(x) have degree i, using

O(n3 log(q)) multiplications in Fq.

The partial factorisation of f(x) given in Theorem 4.2.8 is called a distinct
degree factorisation. To prove Theorem 4.2.8, we require the following result:

Proof of Theorem 4.2.8:
Consider the following algorithm:

54 CHAPTER 4. FACTORISATION OF POLYNOMIALS...

Algorithm 4.2.9. DistDeg

Input: A squarefree polynomial f(x) ∈ Fq[x] of degree n.
Output: Polynomials f0(x), ..., fk−1(x) such that all irreducible factors of fi(x)
have degree i, with f(x) =

∏k−1
i=0 fi(x).

1. i← 0.

2. While deg(f(x)) > 0, do:

(a) fi(x)← gcd(f(x), xqi − x).

(b) f(x)← f(x)/fi(x).

(c) i← i + 1.

3. Return {f1(x), . . . , fi−1(x)}.

The correctness of this algorithm is based on Gauss’ product Lemma (Lemma
2.4.5). We illustrate the idea of the algorithm by first describing the first two
passes through the While loop. When i = 1, the product lemma gives that
xqi − x is the product of all monic irreducible polynomials of degree dividing 1,
i.e. of degree 1. Thus gcd(f(x), xq1 − x) is the product of all irreducible factors
of f(x) of degree 1. We label this product f1(x) and remove it from f(x). Now
when i = 2, xqi−x is the product of all monic irreducible polynomials of degree
dividing 2, i.e. of degree 1 or 2. Since f(x) has no factors of degree 1 (these
having been removed in the previous step), gcd(f(x), xq1 − x) is the product of
all factors of f(x) of degree 2, which we then remove.

The algorithm continues in this manner. At each value of i, gcd(f(x), xq1−x)
is the product of all irreducible factors of f(x) of degree dividing i. All factors
of degree less than i will have been removed from f(x) at previous steps, so
the GCD is in fact all the factors of f(x) of degree exactly i. If the highest
degree irreducible factor of f(x) has degree m, say, then f(x)/fm(x) = 1, so
deg(f(x)) 6> 0 and the algorithm terminates. Note that at this point, i has been
increased to m + 1, so the algorithm only returns f1(x), . . . , fi−1(x).

To establish the complexity of the algorithm, we observe that it requires n
GCD computations and n divisions. The most time consuming GCD is the final
one computed, when i = n, and involves polynomials of degree at most qn. By
the same technique of modular reduction used in GenIrred (Algorithm 2.4.9),
this GCD can be computed in time O(n2 log(q)). The most time consuming
division is the first one, where f(x) of degree n is divided by f1(x). This takes
time O(n2), which is dominated by the time taken for the GCD computation.
The value of k is at most n, so the total time taken by the algorithm is at most
O(n3 log(q)).

¤

In Section 4.4 we will see a polynomial factorisation algorithm which is
designed for factorising polynomials with equal order irreducible factors.

An alternative method for computing distinct degree factorisation, which
utilises matrix multiplication and may sometimes be more efficient, is described
in [5].

4.3. BERLEKAMP’S ALGORITHM 55

We observe that if all of the irreducible factors of f(x) have distinct degrees,
then its distinct degree factorisation is, in fact, its canonical factorisation and
there is no need to employ an equal degree factorisation algorithm to factor
f(x). The previously mentioned paper of Panario [56] contains the following
result regarding the probability of this occurring:

Theorem 4.2.10. As n → ∞, the probability that the distinct degree factori-
sation of a random polynomial of degree n over Fq is equal to that polynomial’s
canonical factorisation is asymptotic to:

cq =
∞∏

k=1

(
1 +

Ik

qk − 1

)
(1− q−k)Ik ,

where Ik is the number of monic irreducible polynomials of degree k over Fq. In
particular, c2 = 0.6656

Proof: Omitted.

4.3 Berlekamp’s Algorithm

The material presented in this subsection will ultimately enable us to prove the
following main result:

Theorem 4.3.1. Berlekamp’s Factorisation Algorithm

There exists a deterministic algorithm which, given as input a squarefree
polynomial f(x) ∈ Fq[x], returns as output the canonical factorisation of f(x)
using O(n3q) multiplications in Fq.

The algorithm which constitutes proof of Theorem 4.3.1 is due to
E. Berlekamp, and was the first general algorithm for factoring polynomials
over finite fields. It was first published in 1967 [3], but this paper is nowadays
most readily found in its republished form in Berlekamp’s book [4]. Strictly
speaking, Berlekamp’s algorithm is an algorithm for factoring squarefree poly-
nomials, but it can be used in conjunction with Squarefree (Algorithm 4.2.6)
to factor any polynomial. The algorithm is deterministic and comprised of lin-
ear algebra over Fq and the computation of polynomial GCDs. The algorithm
is most efficient when applied to polynomials over fields of small order.

We begin with a lemma, which we do not prove here.

Lemma 4.3.2. A polynomial g(x) ∈ Fq[x] satisfies:

g(x)q − g(x) =
∏

s∈Fq

(g(x)− s)

Proof : Omitted.
The following result provides the theoretical core of Berlekamp’s algorithm:

Theorem 4.3.3. If f(x) is an arbitrary monic polynomial in Fq[x], and g(x)
is a monic polynomial in Fq[x] satisfying g(x)q ≡ g(x) (mod f(x)) then:

f(x) =
∏

s∈Fq

gcd(f(x), g(x)− s) (4.2)

56 CHAPTER 4. FACTORISATION OF POLYNOMIALS...

Proof: We establish the equality by showing that each side divides the other.
Since both sides of the equality are monic polynomials, they must thus be equal.

g(x) satisfies g(x)q ≡ g(x) (mod f(x)) and hence f(x) | g(x)q − g(x) or, via
Lemma 4.3.2, f(x) | ∏

s∈Fq
gcd(f(x), g(x) − s). So the lefthand side of (4.2)

divides the righthand side.
Each term gcd(f(x), g(x) − s) of the product in (4.2) clearly divides f(x).

Further, g(x) − si and g(x) − sj are relatively prime if i 6= j and hence so too
are gcd(f(x), g(x)− si) and gcd(f(x), g(x)− sj). Thus we have the result that∏

s∈Fq
gcd(f(x), g(x) − s) | f(x). So the righthand side of (4.2) divides the

lefthand side.

¤

Provided g(x) has degree ≥ 1, this theorem will provide a non-trivial factorisa-
tion of f(x). Berlekamp’s algorithm is primarily an algorithm for finding such
g(x). These polynomials can be found using linear algebra, as we now detail.

The set of all possible irreducible factors of f(x) can be considered a subset
of the factor ring R = Fq[x]/〈f(x)〉. If we consider this ring as an algebra (the
vectorspace being over Fq), then the reader may easily verify that the set of
polynomials g(x) ∈ Fq[x] satisfying the congruence g(x)q ≡ g(x) (mod f(x))
form a subalgebra of R. This is known as the Berlekamp subalgebra of R, which
we shall denote B. The strategy of Berlekamp’s algorithm is to determine a
basis for B so that we may easily generate polynomials g(x) which will yield a
non-trivial factor of f(x) via Theorem 4.3.3. The method by which a basis is
found relies upon some results concerning the following matrix.

Definition 4.3.4. The Berlekamp Matrix of a Polynomial

Let f(x) ∈ Fq[x] be a polynomial of degree n. Define the n polynomials:

Qi(x) =
n∑

j=0

qi+1,j+1x
j for i = 0, ..., n− 1,

where the coefficients qij are chosen such that xiq ≡ Qi(x) (mod f(x)). The
Berlekamp matrix of f(x) is the n× n matrix Q = [qi,j], i.e.:

Q =




q1,1 q1,2 · · · q1,n

q2,1 q2,2 · · · q2,n

...
...

...
...

qn,1 qn,2 · · · qn,n


 .

We have the following result:

Lemma 4.3.5. A polynomial g(x) ∈ Fq[x] of degree < n, given by:

g(x) =
n∑

i=0

gix
i, (4.3)

with gn and possibly other coefficients = 0, is an element of B if and only if the
row vector g = (g0, g1, . . . , gn) is in the null space of the corresponding Q, i.e.:

gQ = 0.

4.3. BERLEKAMP’S ALGORITHM 57

Proof: Observe that:

g(x)q = g(xq) =
n∑

i=0

gix
iq

≡
n∑

i=0

giQi(x) (mod f(x))

=
n∑

i=0




n∑

j=0

giqi+1,j+1x
j




=
n∑

j=0

(
n∑

i=0

giqi+1,j+1

)
xj

=
n∑

j=0

[gQ]jxj

The polynomial in the final equality is the zero polynomial if and only if [gQ]j =
0 for j = 0, 1, . . . , n, i.e. if and only if gQ = 0.

¤

The reader may be more familiar with the nullspace of a matrix being the set
of column vectors which when premultiplied by the matrix to give zero, rather
than the set of row vectors which give zero when postmultiplied. The above
result may be rewritten in these terms if we redefine the Berlekamp matrix to
be the transpose of its current definition. This practice is sometimes seen in the
literature.

We immediately have the corollary:

Corollary 4.3.6. A polynomial g(x) ∈ Fq[x] of degree < n, given by (4.3) satis-
fies g(x)q−g(x) ≡ 0 (mod f(x)) if and only if the row vector g = (g0, g1, . . . , gn)
is in the null space of the corresponding Q − I, where I is the n × n identity
matrix, i.e.:

g(Q− I) = 0 (4.4)

We need one final result before we proceed to Berlekamp’s algorithm.

Lemma 4.3.7. The number of distinct irreducible polynomial factors of f(x) ∈
Fq[x] is equal to the dimension of the null space (the nullity) of the corresponding
matrix Q− I.

Proof: Suppose f(x) has n factors, with cannonical decomposition:

f(x) =
n∏

i=0

pi(x)ei . (4.5)

We seek an expression for the number of polynomials g(x) ∈ Fq[x] satisfying
g(x)q ≡ g(x) (mod f(x)), or, equivalently, the number of g(x) satisfying:

f(x) | g(x)q − g(x),

58 CHAPTER 4. FACTORISATION OF POLYNOMIALS...

i.e.
n∏

i=0

pi(x)ei

∣∣∣
∏

s∈Fq

(g(x)− s) , (4.6)

from (4.5) and Lemma 4.3.2. Since the pi(x)ei are relatively prime and so too
are the g(x)− s, (4.6) is satisfied if and only if each pi(x)ei divides g(x)− si for
some si ∈ Fq, or, equivalently, g(x) ≡ si (mod p(x)ei).

The Chinese remainder theorem for polynomials states that given any set
S = {s1, s2, . . . , sn} ⊂ Fq there exists a unique g(x) (mod f(x)) satisfying
g(x) ≡ si (mod p(x)ei) for i = 1, 2, 3, . . . , n. Since there are qn possible choices
for the set S, there are qn polynomials g(x) ∈ Fq[x] with g(x)q ≡ g(x) (mod f(x)).

Now, by Corollary 4.3.6, these qn polynomials correspond in an injective
fashion with the row vectors in the null space of the matrix Q−I, so there must
be qn vectors in this null space. Since these vectors are over the field Fq, basic
linear algebra gives that the number of vectors in the null space is qdim, where
dim is the dimension of the null space. Hence we have dim = n.

¤

We have now developed the necessary machinery to prove Theorem 4.3.1.
Before continuing, we note briefly that the previous lemma can be used as the
basis for an irreducibility test. If a polynomial is reducible, then the nullity of
the corresponding Q− I will be > 1. If the nullity is 1, the polynomial is either
irreducible or a power of an irreducible polynomial. We may use Squarefree
(Algorithm 4.2.6) to distinguish between these two situations and, if the polyno-
mial is a power of an irreducible polynomial, extract that irreducible polynomial.
This observation was first made by Butler [13].

Proof of Theorem 4.3.1:
Consider Algorithm 4.3.8, Berlekamp. We establish the correctness of

this algorithm as follows. The first three steps compute the Berlekamp matrix
of f(x), reduce it and then use the reduced form to find a basis B matrix’s
nullspace. By Corollary 4.3.6, the polynomials corresponding to the vectors of
B form a basis for the Berlekamp subalgebra of R.

The variable i shall count the number of factors of f(x) computed by the
algorithm at any point. It is naturally initialised to 0. By Lemma 4.3.7, we
know that f(x) has m = |B| irreducible factors. Thus we shall continue to find
new factors until i = m, at which point the known factors must constitute the
canonical factorisation. This justifies the condition on which the While loop
terminates. The “best” factorisation known at any point is stored in the set F .
What we mean by “best” will become clear.

Each pass of the While loop uses Theorem 4.3.1 to compute a partial factori-
sation of f(x), using a particular polynomial g(x) in the Berlekamp subalgebra.
The vector corresponding to this polynomial is then removed from B to avoid
it being reused in later passes of the loop, which would waste effort. At the
end of the For loop, the set F ′ contains all the non-trivial factors of f(x) which
were found using Theorem 4.3.1 with the current choice of polynomial g(x). We
compare F ′ to F . Initially, F = {f(x)}, so the factorisation contained in F ′ will
certainly be “better”. We update F by setting it equal to F ′. On subsequent
passes through the While loop, we compare the two factorisations as follows.
The elements in F multiply to f(x) and so to do the elements of F ′. If we set
A = F \ F ′ and B = F ′ \ F then it follows from this that the product of the

4.3. BERLEKAMP’S ALGORITHM 59

Algorithm 4.3.8. Berlekamp(f(x))

Input: A squarefree polynomial f(x) ∈ Fq[x].
Output: The canonical factorisation of f(x).

1. Compute the Berlekamp matrix Q of f(x).

2. Reduce Q− I to row echelon form.

3. Compute a basis B for B, the nullspace of Q− I.

4. i← 0,m← |B|.
5. F = {f(x)}.
6. While i < m do:

(a) Select a vector g ∈ B and set g(x) to the corresponding polynomial.

(b) B ← B \ {g}.
(c) F ′ ← {}.
(d) For every α ∈ Fq do:

i. h(x)← gcd(f(x), g(x)− α)).
ii. If deg(hi(x)) > 0 do:

A. F ′ ← F ′ ∪ {h(x)}.
(e) Compare F ′ to F . Update F if any factors have been refined.

(f) i← |F |.

elements of A equals the product of the elements of B. If |B| > |A| then we set
F ← (F \ A) ∪ B. Since the elements of A and the elements of B multiply to
give the same product, this does not compromise the fact that the elements of
F multiply to give f(x), and since |B| > |A| the factorisation contained in F is
“improved” by this update. The algorithm continues to refine the factorisation
in F until it is the canonical factorisation.

We establish the complexity of the algorithm in stages. The first stage is the
computation of the Berlekamp matrix. This is equivalent to the computation of
xiq (mod f(x)) for i = 0, 1, . . . , n. x0 (mod f(x)) = 1 regardless of f(x), so no
time is required to compute the first row of the matrix. Finding xq (mod f(x))
can be done using exponentiation by squaring with log q multiplications and
modular reductions of polynomials of degree at most 2n, requiring O(n2 log(q))
multiplications in Fq. We can then find each subsequent row by multiplying
the previous row by xq (mod f(x)) and reducing. Each such multiplication
and reduction takes time O(n2) and we require approximately n of them, so
computing the rest of the matrix requires O(n3) multiplications. Thus the total
time required to compute the Berlekamp matrix is O(n3 + n2 log(q)).

Once the Berlekamp matrix has been computed, it can be reduced using
Gaussian elimination. The complexity of this method is well known to be (and
can easily be seen to be) O(n3). The time taken in this stage is dominated by

60 CHAPTER 4. FACTORISATION OF POLYNOMIALS...

the time taken to compute the matrix.
We now consider the time required for the several GCD computations needed

to find non-trivial factors of f(x). Applying Theorem 4.3.1 with one particular
g(x) requires the computation of q GCDs of polynomials of degree at most n,
thus taking time O(n2q). In the worst case scenario, we will have to use all m
of the polynomials g(x) in the Berlekamp subalgebra to obtain the canonical
factorisation. This requires O(mn2q). Since m ≤ n, this is at most time O(n3q),
making this the time dominating part of the algorithm, which establishes the
complexity stated in the theorem.

¤

The worst case scenario used in the proof of Theorem 4.3.1 (i.e. that we
must use every possible g(x)) is pessimistic. In practice, less g(x) may be
rquired and Berlekamp’s algorithm often performs much better than suggested
by this analysis.

We note now that the requirement that f(x) be squarefree is not strictly
necessary. We have used it only to determine when we have achieved the canon-
ical factorisation, since if f(x) is squarfree the number of irreducible factors is
the dimension of the Berlekamp subalgebra. We can easily use the machinery
of Berlekamp’s algorithm to produce non-trivial factors of arbitrary polynomi-
als. It will then be necessary, however, to perform irreducibility testing on the
factors produced to determine when we have the canonical factorisation.

The factor of q in the complexity of Berlekamp’s algorithm means that it is
feasible only for factorising polynomials over fields of small order q. For large
q, the number of GCD computations required is excessive or even infeasible.
In 1970 Berlekamp published a paper [5] presenting an improved version of
the algorithm which performed better for large finite fields. Space restrictions
prevent a discussion of this improvement here, however we mention that the
basis of the improvement is a method for determining which α ∈ Fq provide non-
trivial factors via Theorem 4.3.1 so that fewer than q GCDs must be computed
to obtain a partial factorisation.

4.4 The Cantor-Zassenhaus Algorithm

The material presented in this subsection will ultimately enable us to prove the
following main result:

Theorem 4.4.1. Cantor-Zassenhaus Factorisation Algorithm

There exists a probabilistic algorithm which, given as input a polynomial
f(x) ∈ Fq[x] whose irreducible factors are all of equal degree, returns as out-
put with probability > 1/2 at least two non-trivial factors f1(x) of f(x) using
O(n2 log(q)) multiplications in Fq.

The algorithm which constitutes a proof of this theorem was proposed by D.
Cantor and H. Zassenhaus in 1981 [15]. It is a probabilistic algorithm, and con-
ceptually much simpler than Berlekamp’s algorithm. The Cantor-Zassenhaus
algorithm is an equal degree factorisation algorithm, but can be used in conjunc-
tion with Squarefree and DistDeg (Algorithms 4.2.6 and 4.2.9, respectively)
to factor arbitrary polynomials. It involves no linear algebra, simply polynomial

4.4. THE CANTOR-ZASSENHAUS ALGORITHM 61

exponentiation and GCD computation. The size of the field q affects only the
probability of success of a single run of the algorithm, without substantially
affecting the running time.

The following theorem describes the algebraic structure of the set of possible
factors of a polynomial f(x) which has equal degree irreducible factors. This
structure is exploited by the Cantor-Zassenhaus algorithm to find a non-trivial
factor.

Theorem 4.4.2. Let f(x) ∈ Fq[x], f = p1(x)p2(x) . . . pn(x), where the pi(x)’s
are distinct and irreducible in Fq[x] and deg(pi(x)) = d, for i = 1, 2, . . . , n (and
hence deg(f(x)) = nd). Let R be the factor ring R = Fq[x]/〈f(x)〉. Let S be
the direct sum of fields:

S =
n⊕

i=1

Fq[x]
〈pi(x)〉 .

For any polynomial g(x) ∈ R, let gi(x) denote the reduction of g(x) modulo
pi(x), i.e. g(x) ≡ gi(x) (mod pi(x)). Then the function ϕ : R→ S defined by:

ϕ(g(x)) = (g1(x) + 〈p1(x)〉, g2(x) + 〈p2(x)〉, . . . , gn(x) + 〈pn(x)〉)
is a ring isomorhphism, i.e.:

Fq[x]
〈f(x)〉

∼=
n⊕

i=1

Fq[x]
〈pi(x)〉 . (4.7)

Proof: Familiar properties of congruence are sufficient to show that ϕ is
a homomorphism. If g(x) ≡ gi(x) (mod pi(x)) and h(x) ≡ hi(x) (mod pi(x))
then g(x) + h(x) ≡ gi(x) + hi(x) (mod pi(x)), giving:

ϕ(g(x) + h(x)) = (g1(x) + h1(x) + 〈pi(x)〉, . . . , gn(x) + hn(x) + 〈pn(x)〉)
= (g1(x) + 〈pi(x)〉, . . . , gn(x) + 〈pn(x)〉)+

(h1(x) + 〈pi(x)〉, . . . , hn(x) + 〈pn(x)〉)
= ϕ(g(x)) + ϕ(h(x)),

and also g(x)h(x) ≡ gi(x)hi(x) (mod pi(x)), giving:

ϕ(g(x)h(x)) = (g1(x)h1(x) + 〈pi(x)〉, . . . , gn(x)hn(x) + 〈pn(x)〉)
= (g1(x)〈pi(x)〉, . . . , gn(x) + 〈pn(x)〉)×

(h1(x) + 〈pi(x)〉, . . . , hn(x) + 〈pn(x)〉)
= ϕ(g(x))ϕ(h(x)).

We now show that ϕ is bijective, and hence an isomorphism. Consider any
s = (g1(x) + 〈p1(x)〉, . . . , gn(x) + 〈pn(x)〉) ∈ S. Since the pi(x) are relatively
prime, the Chinese remainder theorem for polynomials gives that there exists
a unique polynomial g(x) modulo p1(x)p2(x) . . . pn(x) = f(x) (i.e. a unique
polynomial g(x) ∈ R) such that g(x) ≡ gi(x) (mod pi(x)) - that is, a unique
polynomial g(x) ∈ R such that ϕ(g(x)) = s. So every element of S is the image
under ϕ of a unique element of R and hence ϕ is injective. Now, the ith summand
of the direct sum in S is isomorphic to the field Fqd , since pi(x) is an irreducible
polynomial of degree d. Consequently |S| = (qd)n = qnd = deg f(x) = |R|.
Since an injective function between two sets of equal cardinality is surjective,

62 CHAPTER 4. FACTORISATION OF POLYNOMIALS...

ϕ is a surjection, hence a bijection and hence an isomorphism.

¤

The details of the Cantor-Zassenhaus algorithm are slightly different for
each of two possible cases - the case where the field order q is a power of an odd
prime and the case where q is a power of 2. In the discussion that follows, until
mentioned otherwise, we shall assume that q is a power of an odd prime. The
minor changes required for using the algorithm in fields of characteristic 2 are
presented at the end of the discussion.

The following theorem provides the core of the Cantor-Zassenhaus Algo-
rithm:

Theorem 4.4.3. Cantor-Zassenhaus Algorithm Let a(x) ∈ R be a polyno-
mial satisfying:

a(x) 6= 0,±1 (4.8)

and also:

ϕ(a(x)) = (a1, a2, . . . , an), ai ∈ {0,−1, 1}, i = 0, 1, . . . , n. (4.9)

Let A = {i | ai = 0}, B = {i | ai = 1} and C = {i | ai = −1}. Then, if any two
of A,B, or C is non-empty, we have the non-trivial factors:

gcd(f(x), a(x)) =
∏

i∈A

pi(x), (4.10)

gcd(f(x), a(x)− 1) =
∏

i∈B

pi(x), (4.11)

gcd(f(x), a(x) + 1) =
∏

i∈C

pi(x). (4.12)

Proof : We prove the first equation: the others follow in a similar way. For
every i ∈ A, f(x) ≡ 0 (mod pi(x)) and so pi(x) | f(x). Conversely, for every
i 6∈ A, f(x) 6≡ 0 (mod pi(x)) and so pi(x) 6 | f(x). Recalling that the GCD of
two polynomials is the product of all irreducible polynomials which divide both
polynomials, the result follows from these observations.

¤

Thus, we see that polynomials a(x) ∈ R satisfying (4.8) and (4.9) provide a
non-trivial factorisation of f(x). In most cases they do not provide the canonical
factorisation that is sought, but by applying Theorem 4.4.3 recursively, the non-
trivial factorisation obtained can be successively refined until this is found. This
is the strategy used by the Cantor-Zassenhaus algorithm.

The only issue remaining is that of how such polynomials a(x) can be ob-
tained. They cannot be constructed via the Chinese remainder theorem as the
irreducible moduli pi(x) are (of course!) unknown. The Cantor-Zassenhaus al-
gorithm exploits the fact that the pi(x) have equal degrees to generate such a(x)
at random in the manner described below.

Let b(x) be a randomly selected non-constant polynomial from R. If we set
m = (qd − 1)/2 then, since ϕ is an isomorphism, it is clear that:

ϕ(b(x)m) = (b1(x)m, b2(x)m, . . . , bn(x)m).

4.4. THE CANTOR-ZASSENHAUS ALGORITHM 63

Recall that each summand in (4.7) was isomorphic to Fqd and hence αqd−1 = 1
for any α 6= 0 in each summand. Bringing this consideration to bear on the
bi(x) above we see that if bi(x) 6= 0 then bi(x)m = (bi(x)qd−1)1/2 = 11/2 = ±1.
If bi(x) = 0 then bi(x)m = 0. Thus we see that b(x)m satisfies (4.9). If
b(x)m 6= 0,±1 then it also satisfies (4.8) and so it may be used to apply Theorem
4.4.3 to f(x), obtaining a non-trivial factorisation.

We are now in a position to prove Theorem 4.4.1.
Proof of Theorem 4.4.1:
Consider the following algorithm:

Algorithm 4.4.4. CantorZass

Input: A polynomial f(x) ∈ Fq[x] with equal degree irreducible factors.
Output: A set S = {f1(x), . . . , fk(x)} of k non-trivial factors of f(x), 2 ≤ k ≤
3.

1. Select b(x) ∈ R such that b(x) 6= 0,±1 at random, using a uniform prob-
ability distribution over all such polynomials

2. Compute a(x) = b(x)(q−1)/2.

3. f1(x)← gcd(f(x), a(x)).

4. f2(x)← gcd(f(x), a(x) + 1).

5. f3(x)← gcd(f(x), a(x)− 1).

6. Return {fi(x)|fi(x) 6= 1}.

The correctness of this algorithm is clear. Since b(x) is selected so that
b(x) 6= 0,±1, a(x) will be such that by Theorem 4.4.3 at least 2 and perhaps 3
of the fi(x) will be non-trivial factors.

We now consider the complexity of the algorithm. The exponent (q − 1)/2
is clearly < q and so the exponentiation in step 2 may be computed using Ex-
pSquare with O(log(q)) multiplications by b(x). Since deg(b(x)) < n, these
multiplications require at most O(n2) multiplications in Fq, so the exponenti-
ation takes time O(n2 log(q)). Once g(x) has been computed, we require the
computation of one or more GCDs. The polynomials whose GCD we require
have degrees at most n, so each GCD takes time O(n2). The total time for a
single run of the algorithm is hence O(n2(1 + log(q))) = O(n2 log(q)). This is
polynomial in the input size n log(q), as O(n2 log(q)) < O((n log(q))2).

The Cantor-Zassenhaus algorithm is a probabilistic algorithm, since polyno-
mials b(x) are selected at random until a polynomial with a certain property is
found. The number of such polynomials which must be generated and tested
will obviously influence the complexity of the algorithm. We are interested pri-
marily in the expected number of b(x)’s which must be generated before one is
found satisfying b(x)m 6= 0,±1. To obtain this we estimate the probability that
a random b(x) is not appropriate for use in the algorithm, supposing that the
b(x) are selected at random via a uniform probability distribution.

A b(x) is rejected if b(x)m = 0,±1, i.e. if either bi(x) = 0, bi(x) = 1, or
bi(x) = −1 for i = 1, 2, . . . , n. Recall that each bi(x) is an element of a field of
order qd.

64 CHAPTER 4. FACTORISATION OF POLYNOMIALS...

The only bi(x) ∈ Fqd satisfying bi(x)m = 0 is bi(x) = 0, so the probability
that a randomly selected bi(x) satisfies bi(x)m = 0 is 1/qd. Thus probability that
a random b(x), uniquely determined by n random bi(x)′s, is (1/qd)n = 1/qnd,
or 1/qk if we label deg(f(x)) = nd as k.

Now suppose bi(x)qd−1 = 1 for all bi(x) ∈ Fqd and so bi(x)m = 1 for (qd−1)/2
choices of bi(x) and bi(x)m = −1 for (qd − 1)/2 choices. The probability that a
random b(x) is equal to ±1 is thus 2(1/2(1− q−d))n = 21−n(1− q−d)n.

The total probability that b(x) is rejected is hence 1/qnd + 21−n(1− q−d)n.
Now 0 < q−d < 1, so (1−q−d) < 1, hence (1−d−d)n < 1 and so 21−n(1−q−d)n <
21−n.

So the probability that a randomly chosen b(x) is suitable for use with The-
orem 4.4.1 is ≥ 1/2 and we expect to have to select no more than 2 before this
occurs.

¤

We now consider the case where the field order q is a power of 2. We cannot
proceed as above in this case, as if q is a power of 2, and hence even, q−1 is odd
and so m = (q − 1)/2 is not an integer. Fortunately, the above process readily
adapts to this important case. We consider two subcases:

If q ≡ 1 (mod 3) then q−1 ≡ 0 (mod 3), so (q−1)/3 is an integer. If we set
ρ = α(q−1)/3, where α is a primitive element of Fq, then ρ is a primitive third
root of unity. It is clear that ρ2 is also such a root, and that ρ and ρ2 are the
only such roots in the field.

We may now proceed largely as in the odd characteristic case. If we choose
a random b(x) ∈ R as before and compute b(x)m for this new m, we see that
each bi(x) 6= 0 satisfies bi(x)m = (bi(x)qd−1)1/3 = 11/3 ∈ {1, ρ, ρ2}. We can then
make use of (4.10), (4.11), and (4.12) above, and, defining D = {i | ai(x) = ρ},
E = {i | ai(x) = ρ2}, the extra equations:

gcd(f(x), a(x)− ρ) =
∏

i∈D

pi(x),

gcd(f(x), a(x)− ρ2) =
∏

i∈E

pi(x),

which follow in the same way as the other three. Thus we can factor in fields of
order q ≡ 1 (mod 3).

If instead q ≡ 2 (mod 3) these roots ρ do not exist. However, we may append
these roots and then use the method above to factor f(x) over the quadratic
extension field Fq(ρ). We may then combine factors which are conjugate over
Fq to recover the factorisation in the original field.

4.5 Further Reading

The polynomial factorisation algorithms of Berlekamp and Cantor-Zassenhaus
discussed here are undoubtedly the best known and most widely used algorithms
for the problem, but they are by no means the only algorithms or even the
fastest.

An algorithm due to H. Niederreiter [53], based upopn a differential equa-
tion, is also well known. It relies heavily upon linear algebra, like Berlekamp’s

4.5. FURTHER READING 65

algorithm. A number of modifications and improvements to this algorithm exist.
A discussion of these may be found in [48].

The work of V. Shoup on polynomial factorisation is further reading of par-
ticular interest. [33] (with E. Kaltofen) presents a probabilistic factoring al-
gorithm which is asymptotically the fastest known. For a fixed q, it factors a
degree n polynomial in Fq[x] in time O(n1.815). [78] (with J. von zur Gathen)
presents an earlier probabilistic factoring algorithm. [69] presents a determinis-
tic method which is asymptotically the fastest determinstic algorithm known.

Finally, we mention that the factorisation of polynomials over finite fields
is also often used to compute the canonical factorisation of polynomials with
integer coefficients, i.e. polynomials in Z. A finite field factoring method can
be used to factor such a polynomial modulo a prime p, i.e. in the field Fp. A
lemma due to Hensel then gives a factorisation modulo a power pn of this prime.
If pn is large enough, the factorisation in Z may be “recovered”. A discussion
of this methodology can be found in [48].

Chapter 5

Index Calculus Algorithms
for Finite Fields

All the discrete logarithm algorithms which we have seen so far have been so-
called generic algorithms, which can be used to solve the discrete logarithm
problem in any finite cyclic group. In this chapter we consider a class of non-
generic algorithms, called index calculus algorithms, which can only be used to
solve the DLP in particular groups. The multiplicative groups of finite fields
are among the groups for which index calculus algorithms can be used. They
are of particular interest because the loss of applicability to arbitrary groups
allows a substantial decrease in complexity. While it is a proven result than
any generic discrete logarithm algorithm must perform at least O(

√
n) group

operations to solve the DLP in a finite cyclic group of order n (a complexity
which is exponential in bitsize of the group order, with

√
n = e1/2 log n), index

calculus algorithms allow us to compute logarithms in so-called subexponential
time.

The term “index calculus” describes a family of discrete logarithm algo-
rithms which are built around the same central idea, but in which the details of
implementation may vary depending upon the fields being considered and appli-
cation specific requirements. We sometimes refer to these methods collectively
as “the” index calculus method, even though there is no canonical example of
an algorithm following the template. The general idea of the index calculus
method is generally considered to have originated in [49]. The first published
method explicitly considering the computation of discrete logarithms is due to
L. Adleman [1]. All of these authors published index calculus algorithms appli-
cable to prime order fields Fp. The first generalisation to prime power fields Fpn

was due to Hellman and Reyneri [32]. In 1984, Blake, Fuji-Hara, Mullin and
Vanstone [8] published an important improvement to this method for arbitrary
Fpn and also an improvement specific to fields of characteristic 2, F2n . The
latter idea was then extended by D. Coppersmith [20] in the same year to give
a drastically faster algorithm for F2n .

The focus of our attention in this chapter will be somewhat biased toward
the prime power order fields Fpn . This is because we have developed more
theory regarding the representations of these fields than of prime order fields
Fp. For example, we have a result from Section 2.4 for counting irreducible

66

5.1. GENERIC DESCRIPTION 67

polynomials but no corresponding result for counting prime numbers. We have
also considered polynomial factorisation in Chapter 4 but have not considered
integer factorisation. The results from these considerations will be used in
developing estimates of the asymptotic complexity of index calculus algorithms.
We shall not develop such estimates for Fp algorithms. Towards the end of
the chapter we discuss one such algorithm briefly, one in some detail and give
reference to others.

5.1 Generic Description

In this section we discuss the general framework which all algorithms bearing
the name “index calculus” have in common.

The index calculus algorithm relies crucially upon the property of discrete
logarithms (1.1) given in Chapter 1, stating that the discrete logarithm of a
product of field elements is equal to the sum of the logarithms of the individual
elements modulo q−1. The key concept behind an index calculus algorithm for
computing discrete logarithms is to use this property of logarithms to “build
up” new logarithms from a database of known logarithms. A necessary step in
achieveing this for a field Fq is the establishment of a so-called factor base: a
subset T = {p1, p2, . . . , pt} ⊂ Fq which is “small” with the property that the
following set is “large”:

{h ∈ Fq|h =
t∏

i=1

pei
i , pi ∈ T, ei ∈ Z+}. (5.1)

That is, the factor base is a small set of field elements such that a large pro-
portion of the elements in Fq may be factorised into powers of elements from
the factor base. The notions of small and large used here are relative and their
importance will become clear. The need for a factor base is the reason why
index calculus methods are not applicable to arbitrary cyclic groups. For some
groups, such as the group of points on an elliptic curve, there are no known
appropriate choices of a factor base.

With a factor base established, an index calculus method then generates a
number of linear equations relating the discrete logarithms (to the desired base)
of the elements of the factor base, i.e. equations of the form:

n∑

i=1

ai logg(ti) ≡ bi (mod q − 1).

These equations are usually refered to as relations. There are many different
methods for generating relations, depening upon the field of interest, and some
are more efficient than others. However, the property of logarithms given in
Theorem 1.1.2 is always used. We shall see a number of methods for generating
relations throughout this chapter. Once a number of linearly independent rela-
tions which is equal to the number of factor base elements has been computed,
these relations contain enough information to uniquely determine the logarithm
of each factor base element. This can be done in a number of ways. The log-
arithms of all the factor base elements form the database of known elements
which we spoke of earlier.

68 CHAPTER 5. INDEX CALCULUS ALGORITHMS

Suppose that we ultimately wish to determine the discrete logarithm of h.
With a well-chosen factor base, for most h we will be able to factorise h into
powers of factor base elements, or else factorise gmh in this way for some integer
m. Supposing that we can achieve this and we find that:

gmh =
n∏

i=1

tei
i ,

then (1.1) gives us the equation:

logg(h) ≡
n∑

i=1

ei logg(ti)−m (mod q − 1).

With the logg(ti) terms known after solving the linear system arising from our
collected relations, we may simply evaluate this to find the desired logarithm.

The importance of the factor base being “small” and the set (5.1) being
“large” is now clear: The larger the factor base, the greater the time which must
be spent generating relations and then solving or manipulating the resulting
system of linear equations. The smaller the factor base, the less likely that
elements will be able to be factorised into products of factor base elements as
required.

We note that much of the work involved in the index calculus algorithm
can be “recycled” for further computations. Once we have have chosen a factor
base, we only need to complete the process of generating relations and solving
the linear system a single time and can then compute the discrete logarithm of
any field element which factors into powers of factor base elements for only the
cost of that factorisation and the evaluation of a linear equation.

We now discuss some specific applications of this general framework to par-
ticular finite fields.

5.2 A Simple Index Calculus Method for Fpn

In this section, we shall present a simple index calculus algorithm for computing
discrete logarithms in a field Fpn of prime power order, using our polynomial
representation. Our description of this algorithm shall be the most thorough
in this chapter. In the following sections we shall consider a number of well
known improvements to the various components of this basic algorithm. This
algorithm was originally described by Hellman and Reyneri [32] for the special
case of fields F2k which have characteristic 2, however it easily generalises to
fields Fpn for arbitary primes p, and we describe it in such generality. The
generalisation to arbitrary p appears to have first been discussed by Adleman
[1]. Because characteristic 2 fields F2k are widely used in practice due to their
easy implementation, some of the improvements we shall view later are specific
to these fields.

Throughout this algorithm, we represent Fpn in the usual way, as the ring
of polynomials Fp[x] modulo some irreducible polynomial p(x) of degree k. We
are interested in finding the logarithm of the element h(x) to the base of the
generator g(x).

5.2. A SIMPLE INDEX CALCULUS METHOD FOR FP N 69

Choice of a Factor Base

We begin by selecting a factor base T . Recall that our requirements for T are (i)
that |T | = t be “small” and (ii) that a large proportion of the elements of F∗pn

may be written as a product of elements of T . Our choice of factor base is guided
by this second condition. We observe that our representation of Fpn is contained
within a larger algebraic structure Fp[x] which is a unique factorisation domain:
every polynomial in Fp[x], and hence every polynomial in our representation of
Fpn may be uniquely expressed as a product of irreducible polynomnials. This
motivates the following procedure for defining our factor base:

Defining a Factor Base

1. Select an integer b from the set {1, 2, . . . , k − 1}.
2. Set T equal to the set of all monic, irreducible polynomials pi(x) ∈ Fp[x]

of degree at most b.

The parameter b is referred to as a smoothness parameter. The reason for
this is the following definition:

Definition 5.2.1. Smooth Polynomials

A polynomial f(x) ∈ Fq[x] is called b-smooth if every irreducible factor fi(x)
of f(x) satisfies deg(fi(x)) ≤ b.

Throughout the chapter, we may say that a polynomial is simply “smooth”.
By this we mean b-smooth with respect to the value of b currently being con-
sidered, which should always be clear from context. We note in advance that
we are able to use Lemma 2.4.3 to compute the size t of this factor base, and
shall do so later.

Phase I: Generation of Relations

We generate linear equations between the logarithms of the irreducible polyno-
mials in our factor base by randomly generating elements of Fpn in such a way
that their logarithm is known, and then attempting to factor these elements
over the factor base. The properties of logarithms given in Theorem 1.1.2 then
allow us to derive a relation. We proceed as follows:

Generating Relations

1. Select a random integer k, using a uniform distribution on the set {1, 2, . . . , p−
1}.

2. Compute hk(x) = g(x)k (mod p(x)).

3. Test to see if hk(x) is smooth. If it is, compute the canonical factorisation
of hk(x) and if:

hk(x) =
t−1∏

i=0

pi(x)ei , (5.2)

then store the relation:

k ≡
t−1∑

i=1

ei logg(x)(pi(x)) (mod pn − 1),

70 CHAPTER 5. INDEX CALCULUS ALGORITHMS

which follows from (5.2) by (1.1). If hk(x) is not smooth, then return to
step 1.

4. Continue until t or more relations have been found.

The steps involved in this method of generating relations may be performed
using previously discussed algorithms. The exponentiations may be done us-
ing either exponentiation by squaring as discussed in Section 2.3.2 or addition
chain exponentiation as discussed in Section 2.3.3. The smoothness testing and
computation of canonical factorisations may be done using either Berlekamp’s
algorithm from Section 4.3 or the Cantor-Zassenhaus algorithm from Section
4.4. We can and later will use this previous material to estimate the amount of
work involved in finding our relations in this manner.

Phase II: Solving the Linear System

Suppose now that we have generated (or believe we have generated) t linearly
independent relations. We may represent this sytem of linear equations as a
t × t matrix over Zpn−1. The system may then be solved in any of the many
well-known ways, for example using Gauss-Jordan elimination to put the matrix
into reduced row echelon form.

It is worth noting that this matrix may often be “sparse”, in the sense of
having a non-negligible number of zero entries. In this case, performance may
be improved by using some of the many techniques which have been developed
especially to perform computations on sparse matrices. Again, space limitations
prevent any discussion of these techniques. Commonly used methods for solving
this system include D. H. Widemann’s algorithm of 1986 [79] and a method
described by B. LaMacchia and A. Odlyzko in [39], usually referred to as the
Lanczos method.

Once the system has been solved, we know the discrete logarithm to the base
of interest of any element of the factor base, and hence it is a trivial matter to
compute the discrete logarithm of any field element for which we can find a
factorisation over the factor base.

Phase III: Computing the Final Logarithm

Once we know the logarithm of all of the elements in the factor base, we may
compute the logarithm of a particular field element as follows:

Computing a Logarithm

1. Select a random integer k, using a uniform distribution on the set
{1, 2, . . . , p− 1}.

2. Compute h∗(x) = h(x)g(x)k (mod p(x)).

3. Test to see if h∗(x) is smooth. If it is, compute the canonical factorisation
of h∗(x) and if:

h∗(x) =
t−1∏

i=0

pi(x)ei ,

5.2. A SIMPLE INDEX CALCULUS METHOD FOR FP N 71

then compute logg(x)(h(x)) according to

logg(x)(h(x)) ≡
t−1∑

i=1

ei logg(x)(pi(x))− k (mod pn − 1).

If h∗k(x) is not smooth, then return to step 1.

Complexity Analysis

We now prove a result regarding the complexity of the algorithm described
above. Our analysis is not exhaustive, as this is a daunting task. Nevertheless,
this algorithm is widely considered to have been analysed rigorously, and we
give references which provide the required details. While the algorithm was
first discussed by Hellman and Reyneri [32], our analysis is largely guided by
the later work of Coppersmith [20] and Odlyzko [54], as the analysis in [32] has
been improved upon by these works. Our result is specific to the use of the
algorithm in fields of characteristic 2, F2n . In practice, these are the only fields
the algorithm is used for.

The result we seek to prove uses “little O” notation, defined similarly to big
O:

Definition 5.2.2. “Little O” notation

A function f(n) is said to be o(g(n)) (“little O g(n)”) if:

lim sup
n→∞

f(x)
g(x)

= 0

We note that o(1) terms, which we shall see often, tend to 0 as n←∞.
Our complexity result is the following:

Theorem 5.2.3. Complexity of the Index Calculus Algorithm for F2n

The described algorithm , when used over F2n , has asymptotic time complex-
ity:

exp
(
(1 + o(1))

√
n log(n)

)

as n, b←∞ subject to n1/100 ≤ b ≤ n99/100.

Proof :
We analyse the complexity of the algorithm phase by phase.

Phase I

We begin by deriving an expression for the size of the factor base, as this will
tell us how many relations we need to generate. Recall from our work in irre-
ducible polynomials in Chapter 2 (Lemma 2.4.3 and its corrolaries) that there
are approximately 2m/m irreducible polynomials of degree m over F2. Thus the
size of our factor base is approximately:

t =
b∑

i=1

2i

i
<

1
b

b∑

i=1

2i ' 2b+1

b
(5.3)

72 CHAPTER 5. INDEX CALCULUS ALGORITHMS

Now knowing how many relations we need to generate, we must estimate
the work involved in generating each relation. Since relations are generated in
a random manner, the amount of work involved is a random variable and are
interested in the expected amount.

Each computation of a new hk(x) and subsequent attempt to derive a rela-
tion can be considered as a Bernoulli trial with some probability of “success”
(i.e. of hk(x) being smooth and we can get a relation). If we can compute this
probability of success, then we can find the expected number of trials before
we find a relation. The probability of success is exactly the probability that a
random polynomial in Fp[x] of degree at most k − 1 is smooth. To find this
probability requires knowing the number of smooth polynomials of a certain
degree.

In 1984, I. F. Bake, R. Fuji-Hara, R. C. Mullin and S. A. Vanstone published
a set of relations for counting smooth polynomials [8]. The author has identified
an error in these published relations and has conferred with Mullin regarding it.
The following relations have been agreed upon as correct: Let Nl(m, k) denote
the number of monic polynomials over Fq of degree ≤ m whose largest degree
irreducible polynomial factors have degree ≤ k (i.e. the number of k-smooth
polynomials of degree ≤ m). Similarly, let Ne(m, k) denote the number of monic
polynomials over Fq of degree ≤ m whose largest degree irreducible polynomial
factors have degree exactly k. Then we have:

1. For m > 0:
Ne(m, 0) = Nl(m, 0) = 1.

2. For k ≥ m > 0:

Nl(m, k) =
qm+1 − 1

q − 1
.

3. For k > m > 0:
Ne(m, k) = 0.

4. For m ≥ k + 1:

Nl(m, k) = Ne(m, k) + Nl(m, k − 1).

5. For m ≥ k ≥ 1:

Ne(m, k) =
bm/kc∑

i=1

(
Ne(k, k) + i− 1

i

)
Nl(m− ik, k − 1).

6. For m ≥ 1:
Ne(m, m) = Nl(m,m)−Nl(m,m− 1).

We do not discuss here the derivation of this relations. This task is relatively
straightforward.

These six relations provide sufficient information for us to evaluate the func-
tions Nl(m, k) and Ne(m, k) for all possible m and k. However, they do not allow
us to do so efficiently: Suppose we wish to use the index calculus algorithm to
compute logarithms in F22048 , using the polynomial representation of this field.
If we choose a smoothness-bound b, then the number of b-smooth polynomials

5.2. A SIMPLE INDEX CALCULUS METHOD FOR FP N 73

in the representation of the field is Nl(2047, b). We are interested in finding this
number for many choices of b, to determine a suitable choice of that parameter.
An implementation of the above relations by the author required over 36 hours
of continuous computation to compute Nl(2047, b) for b = 1, 2, . . . , 2047, on a
machine with a 2.0 GHz Intel R©Pentium R©-M Centrino R©processor and 1 GB
of RAM, running the NetBSD R©3.0 operating system. The same implementa-
tion required less than an hour to compute Nl(1023, b) for b = 1, 2, . . . , 1023,
suggesting that the computation time for this task increases quickly with m
and that computing all the numbers of interest would be infeasible for larger
fields. The results of these computations were used to produce Figure 5.1, which
shows the proportion of polynomials used in the representation of F22048 which
are b-smooth for all possible choices of b.

Smoothness Parameter b

P
ro

po
rt

io
n

of
P
ol

yn
om

ia
ls

W
hi

ch
ar

e
b-

sm
oo

th

2000150010005000

1

0.8

0.6

0.4

0.2

0

Figure 5.1: Proportion of Polynomials over F2 of Degree < 2048 Which are
b-smooth for b < 2048.

The ability to numerically compute the number of smooth polynomials of a
certain type is of no use in analysing the complexity of an algorithm. For this
purpose, we must rely upon asymptotic results. Using generating functions and
the so-called “saddle point method”, Odlyzko has derived the following result
regarding smooth polynomials over F2 [54].

Theorem 5.2.4. Let N(n,m) be the number of b-smooth polynomials of degree
n. Then, as n, b→∞ such that n1/100 ≤ b ≤ n99/100:

N(n, b) = 2n(n/b)(1+o(1))n/b,

and hence the probability that a random polynomial of degree n is b-smooth is:

P (n, b) = e(1+o(1))n/b log(b/n). (5.4)

74 CHAPTER 5. INDEX CALCULUS ALGORITHMS

Proof : Omitted.
A similar expression can be achieved for polynomials over arbitrary fields.

However, these are more complicated and since F2 is by far the most used case
for cryptographic applications we shall be satisfied with the above.

We have so far shown that in order to generate the required number of
relations, we expect to have to try about the following number of random values
of k:

(2b+1/b)(n/b)(1+o(1))n/b. (5.5)

We are now interested in the amount of work required to derive, or attempt
to derive, a relation from k. This is at least the amount of work required to
test hk(x) for smoothness and at most the amount of work required to factor
hk(x). The simplest way to test a polynomial hk(x) for smoothness is to simply
factor it and inspect the degree of the irreducible factor with highest degree. If
this is ≤ b, then the polynomial is smooth. In fact, we do not have to do quite
this much work. Recall the algorithm DistDeg (Algorithm 4.2.9). Given any
squarefree polynomial f(x) of degree n, this algorithm outputs f1(x), . . . , fn(x)
which multiply to f(x) and which have the property that fi(x) is a product of
irreducible polynomials of degree i. It is clear that f(x) is smooth if and only
if fb+1(x) = . . . = fn(x) = 1. Thus we need only compute a distinct degree
factorisation of hk(x) to test it for smoothness. We may even modify DistDeg
to abort as soon as it finds one non-trivial factor fi(x) for i > b, thus saving
further time. If hk(x) is found to be smooth using this test, then we may refine
the distinct degree factorisation to the canonical one using either Berlekamp’s
algorithm or the Cantor-Zassenhaus algorithm and derive a relation. We have
shown that polynomial factorisation may be performed in polynomial time. The
time taken to perform factorisations thus varies much less substantially with the
parameter n than does the the number of factorisations we have to perform. In
light of this, we treat the factorisations as taking constant time.

Ignoring polynomial time factors, the running time of phase I of the algo-
rithm is:

(2b+1/b)(n/b)(1+o(1))n/b.

We may make our choice of the smoothness parameter b so as to minimise this
quantity. This can be shown to occur for b = c1

√
n log(n), where c1 = 0.8493

(see [54]). With this choice of b, the running time becomes:

exp
(

(c1 log(2) +
1

2c1
+ o(1))

√
n log(n)

)
. (5.6)

This concludes our analysis of phase I of the algorithm.

Phase II

Phase II of the algorithm consists of solving a t × t system of linear equations
over Z2q−1. The time required for this depends upon the method used. Suppose
that this system can be solved in tω operations for some ω. If we use Gauss-
Jordan elimination, it is well known and fairly simple to see that ω = 3. Using
a method of Strassen [73] it is possible to achieve ω = 2.807. A method of
Coppersmith and Winograd [19] would give ω = 2.496, but this method is
generally considered impractical.

5.3. AN IMPROVED METHOD FOR FIELDS FP N 75

All of the above methods are algorithims which do not benefit from any
potential sparseness of the system. It turns out that the system arising from
an index calculus algorithm is typically quite sparse. Panario [56] shows that
a polynomial of degree n over a finite field has an expected log(n) irreducible
factors, counting multiplicity. We may thus expect the matrix corresponding to
an index calculus system to have log(n) non-zero entries in each row, leaving
2b+1/b − log(n) zero entries. The matrix may thus be considered sparse, and
techniques which take advantage of this may achieve running times with ω ' 2.
Using such techniques and our value of b chosen earlier the complexity of phase
II is thus:

22(b+1)/b = exp
(
(c2 + o(1))

√
n log(n)

)
, (5.7)

which is of the same general form as (5.6).

Phase III

It is immediately clear that whatever time is spent by the algorithm in phase
III shall be dominated by the first two phases; The time spent trying to find the
desired logarithm is the same as the time spent trying to find a single relation
in phase I.

Thus the time taken by the first two phases gives the asymptotic complexity
of the whole algorithm, which is

exp
(
(c + o(1))

√
n log(n)

)
, (5.8)

as required. The constant c is whichever of the constant terms in (5.6) and (5.6)
is larger.

¤

5.3 An Improved Method for Fields Fpn

An important and well-known improvement to the previous index calculus al-
gorithm for Fpn was published in 1984 by I. F. Bake, R. Fuji-Hara, R. C. Mullin
and S. A. Vanstone [8]. This algorithm has become known as the “Waterloo
variant”, or “Waterloo algorithm”, due to three of the paper’s four authors being
at the University of Waterloo, Canada at the time of publication. The improve-
ment uses the Euclidean algorithm for polynomials to reduce the amount of work
which must be done to establish relations between the factor base logarithms.

In the algorithm above, one generates relations by computing hk(x) = g(x)k

(mod p(x)) and attempting to factor the result over the factor base. A relation is
yielded only if hk(x) is smooth. It is observed in practice (and stands to reason)
that the probability of this factorisation being possible decreases as the degree
of hk(x) increases. The Waterloo team use the following result to increase the
probability that a useful factorisation is possible, and also decrease the amount
of effort involved in the factorisation:

Theorem 5.3.1. Let hk(x) ∈ Fq[x] satisfy (n− 1)/2 < deg(hk(x)) < n. Then
there exist r(x), t(x) ∈ Fq[x], both of degree ≤ (n− 1)/2, satisfying:

t(x)f(x) ≡ r(x) (mod p(x)), (5.9)

and these can be found in polynomial time.

76 CHAPTER 5. INDEX CALCULUS ALGORITHMS

We do not offer a complete proof of this result. Some details can be found
in [8]. The essence of the proof is that polynomials r(x), t(x) satisfying the
above may be computed using the Euclidean algorithm for polynomials. Given
input polynomials a(x) and b(x), the Euclidean algorithm computes polynomials
si(x), ti(x), ri(x) for i = −1, 0, 1, 2, . . . satisfying:

si(x)a(x) + ti(x)b(x) = ri(x), for i ≥ −1, (5.10)

or ti(x)b(x) ≡ ri(x) (mod ()a(x)). Thus if we apply the Euclidean algorithm
with a(x) = p(x) and b(x) = f(x) every ti(x) and ri(x) in the generated sequence
satisfy (5.9). That there exists in the sequence terms ti(x) and ri(x) which
also satisfy the required condition on their degrees follows from some inductive
arguments. That the polynomials can be found in polynomial time follows from
the fact that the entire Euclidean algorith runs in polnomial time and hence
so to must a modification of the algorithm which terminates part way through
when a certain condition is met.

The Waterloo algorithm generates relations as follows. We generate hk(x) =
g(x)k as per the previous algorithm, and then use the Euclidean algorithm as
above to find r(x), t(x) so that t(x)hk(x) ≡ r(x) (mod p(x)). If r(x) and t(x)
are both smooth, then we can derive the relation:

logg(x)(r(x))− logg(x)(t(x)) ≡ k (mod pn − 1).

The reason that this method is an improvement upon the previous one is that,
as mentioned, the probability of a polynomial being smooth decreases as the
degree of the polynomial increases. The polynomials r(x) and t(x) which we
require to be smooth above are guaranteed to have degrees at most (n − 1)/2.
By contrast, hk(x) is likely to have a much higher degree, very close to n− 1.

Although the Waterloo algorithm is observed in practice to perform much
better than our original algorithm, no rigorous result as to its complexity can be
obtained, due to uncertainty in the exact relation between hk(x) and the pair
r(x), t(x). However, we can make a seemingly reasonable assumption and obtain
an estimate as to the degree of improvement provided by this observation. We
consider the case q = 2n, so that we can use 5.4. The probability of successfully
deriving a relation using the Waterloo method is at its least when, for a given
hk(x) the resulting polynomials r(x) and t(x) are both of degree (n − 1)/2. If
we assume r(x) and t(x) act as random and independent polynomials selected
from a uniform probability distribution over all polynomials of this degree, then
the probability that both polynomials are smooth is approximately less than:

P (n/2, b)−2 '
(

2b

n

)(1+o(1))n/b

By contrast, if we do not use the Euclidean algorithm and instead simply rely
on hk(x) being smooth, our probability of success is at its least when hk(x) has
degree n− 1. Our probability of success is then approximately less than:

P (n, b)−1 '
(

b

n

)(1+o(1))n/b

.

Thus using the Euclidean algorithm improves the probability of successfully gen-
erating a relation by a factor of approximately 2(1+O(1))n/b, which can be quite

5.4. IMPROVED METHODS FOR FIELDS OF CHARACTERISTIC 2, F2N 77

substantial. For instance, the Waterloo team used their method to compute
logarithms in F2127 using b = 17, for which the improvement factor is approx-
imately 2127/17 ' 177, allowing a computation which would have previously
taken just over a week to be performed in one hour. Note, however, that this
improvement does not change the asymptotic complexity of the algorithm. It
simply reduces the constant factors in this complexity by such an amount that
run times are significantly reduced.

5.4 Improved Methods for Fields of Character-
istic 2, F2n

Finite fields of characteristic 2, i.e. those fields F2n , are of supreme importance
in practice, due to their straightforward and efficient implementation on binary
computers. They posses an important theoretical property which other finite
fields do not: squaring elements of F2n is a linear operation: (α+β)2 = α2 +β2.
This fact was first exploited by the Waterloo team in the same paper which
discussed their Euclidean algorithm improvement, through the use of so-called
systematic equations to assist in the generation of some relations. This work
was furthered by D. Coppersmith in 1984 to show that all the required relations
could be generated in a similar way.

5.4.1 The Waterloo Work

We first discuss the original work of the Waterloo team, published in [8]. The
following result is central:

Theorem 5.4.1. Let f(x) ∈ Fq[x] be irreducible, with deg(f(x)) = n, and
g(x) ∈ Fq[x] be arbitrary. If m(x) is a divisor of f(g(x)) then deg(m(x)) is a
multiple of n.

Proof: We prove the result for irreducible divisors m(x) of f(g(x)), since if
every irreducible factor of a divisor has a degree which is a multiple of n, then
so does the divisor itself. We label f(g(x)) as h(x) for clarity. Let K be the
splitting field of h(x), α ∈ K a root of m(x) and L the splitting field of m(x).
Since m(x)|h(x) and m(α) = 0, we must have h(α) = 0 and so g(α) is in the
splitting field of f(x), which is R = Fqn . Further, g(α) is not contained in any
proper subfield of Fqn , since every zero of f(x) generates R. Since g(α) ∈ L we
have R ⊂ L and hence n|[L : Fq]. Since m(x) is irreducible with splitting field
L we have deg(m(x)) = [L : Fq] and so n| deg(m(x)).

¤

Suppose the field F2n is represented as F2/〈p(x)〉. If the irreducible poly-
nomial p(x) has a particular property then we may use the above result in
conjunction with an irreducible polynomial of low degree to obtain a relation.
We illustrate with the following example from [8]:

Example

Consider F2127 generated by p(x) = 1 + x + x127. The polynomial g(x) =
1 + x2 + x5 is irreducible over F2. We have x27

= x128 ≡ x + x2 (mod p(x)),

78 CHAPTER 5. INDEX CALCULUS ALGORITHMS

and so:

g(x27
) = g(x + x2) = 1 + x2 + x4 + x5 + x6 + x9 + x10

= (1 + x2 + x3 + x4 + x5)(1 + x3 + x5) = p1(x)p2(x).

Now, squaring is a linear operator over F2 and so g(x27
) = g(x)2

7
, yielding:

27 log(g(x)) = log(p1(x)) + log(p2(x)),

a relation between three polynomials of low degree.
By Theorem 5.4.1, the irreducible factors of g(x2 + x) in this example were

required to be multiples of 5 less than 127 and had to sum to 10 (mod 127).
The only possibilities were that g(x2 + x) was an irreducible polynomial of
degree 10 or the product of two polynomials of degree 5. Thus this procedure,
which required no exponentiation but only the factorisation of a low degree
polynomial, was guaranteed to yield a relation among polynomials of low degree.
By contrast, the previous procedure required an exponentiation as well as the
factorisation of a probably high degree polynomial, and was not guaranteed to
produce a useful relation.

An equation generated in the above manner is termed a systematic equation.
If we allow g(x) to range over all irreducible polynomials of low degree (where
the concept of “low” depends upon our chosen smoothness parameter b), we may
collect several relations between polynomials whose degrees must be multiples of
the same low degree. Experimental evidence suggests that this method can yield
a substantial number of relations at little cost. By way of example, there are
226 irreducible polynomials of degree at most 10 in the representation of F2127

as F2[x]/〈x127 +x+1〉 - the Waterloo team found that 142 linearly independent
systematic equations could be produced for them, almost 63% of the number
required to find the logarithm of each of them. More than 71% of the required
equations for a smoothness parameter of 9 can be found in the same way.

The defining property of p(x) = 1 + x + x127 which was used in the above
example was the fact that we could find a power of 2, k = 27, such that xk

was congruent to a low degree polynomial (mod p(x)), in this case x2 + x. For
any given irreducible polynomial p(x) which is used to construct a polynomial
representation of a field of characteristic 2, the more terms x2n

which are con-
gruent to low degree polynomials modulo p(x), the more effective the method
of systematic equations. The Waterloo team considered the representation of
fields F2n as vector spaces over F2 with basis {α, α2, . . . , αk−1}, where α is a
root of a primitive polynomial f(x) of degree k. Under this representation, they
define the square orbit of α to be the set SO(α) = {α2i |0 ≤ i ≤ k − 1}, and
say that if SO(α) contains many low degree polynomials for a particular choice
of f(x), then the resulting representation exhibits orbital weakness. Systematic
equations may be generated in any representation of the field exhibiting such
weakness.

It may seem at first that the use of systematic equations may be avoided and
hence attacks slowed down by using “orbitally strong” representations of prime
power order fields when implementing cryptosystems. This is not the case. In
1974, N. Zierler presented an algorithm which performs conversions between dis-
crete logarithms in two different representations of the field F2n [80]. Whatever
field representation a cryptosystem is implemented with, an attacker may use

5.4. IMPROVED METHODS FOR FIELDS F2N 79

Zierler’s algorithm to solve the DLP in an orbitally weak representation of the
same field, using systematic equations to reduce the workload, and then convert
the result back to the implemented representation. Thus the improvement of-
fered by systematic equations is always of relevance when considering the DLP
in fields of characteristic 2.

5.4.2 Coppersmith’s Work

These ideas were later extended by Coppersmith [20], who showed how all of the
required relations to determine the factor base logarithms could be produced
systematically.

Coppersmith’s method for generating relations proceeds as follows. We begin
by defining some constants. Our choices for these constants shall be justified
later.

Suppose we are given a represention for our field using a primitive poly-
nomial p(x) of degree n such that p(x) = xn + q(x), where deg(q(x)) < n2/3.
Coppersmith suggests that such a representation can be expected to exist, based
on heuristic arguments. Once again, Zierler’s algorithm can be used to convert
between such a representation and any other one. Select a smoothness param-
eter b, such that b ≥ c1n

1/3 log(n)2/3 for some small constant c1. Choose an
integer d which is near b. Let k be the power of 2 which is nearest

√
n/d. Let

h be dn/ke. Let the polynomial r(x) be chosen so that r(x) ≡ xhk (mod p(x)).
From our choice of p(x), r(x) now satisfies r(x) = q(x)xhk−n. Set r = deg(r(x)).

To generate a relation, we begin by select random polynomials a(x), b(x) ∈
F2 such that deg(a(x)),deg(b(x)) ≤ d and gcd(a(x), b(x)) = 1. We then set
c(x) = xha(x) + b(x) and compute d(x) ≡ c(x)k. If c(x) and d(x) are both
b-smooth and factor as, say:

c(x) =
m∏

i=1

pi(x)ei and d(x) =
m∏

i=1

pi(x)fi ,

then we have the relation:
m∑

i=1

(kei − fi) logg(x)(pi(x)) = 0.

This method has a high probability of successfully generating a relation, and
is capable of generating enough relations to completely determine our factor base
logarithms. To see why this is the case, we need to consider the structure of the
polynomials c(x) and d(x), using the constants defined earlier.

Firstly, it should be clear that the maximum possible degree of c(x) =
xha(x) + b(x) is the maximum possible degree of xha(x), which is h + d, via
our choice of a(x). Next we consider the maximum possible degree of d(x).
Recalling that k was chosen to be a power of 2, so exponentiation to the k-th
power is a linear operation in F2, we observe that:

d(x) = c(x)k

=
(
xha(x) + b(x)

)k

= xhka(x)k + b(x)k

= r(x)a(x)k + b(x)k,

80 CHAPTER 5. INDEX CALCULUS ALGORITHMS

so the maximum possible degree of d(x) is the maximum possible degree of
r(x)a(x)k, which is r + kd, by our choices of r(x) and a(x). By our choice
of parameters, these maximum degrees are both approximately

√
nd. This is

substantially less than (n− 1)/2, so the probability that c(x) and d(x) are both
smooth and we get a relation is even greater than the probability of obtaining
a relation using the Euclidean algorithm as shown by the Waterloo team. The
parameters were chosen above so as to optimise this probability. Further, Cop-
persmith shows that the number of relatively prime polynomials a(x) and b(x)
available for use in this method is sufficient to obtain all the required relations
this way. Using a similar analysis to ours from section 5.2 (i.e. using Odlyzko’s
estimate (5.4)for P (n, b)), Coppersmith finds the total time complexity for this
algorithm to be:

exp
(
(c + o(1))n1/3 log(n)2/3

)
,

which is substantially faster than the Waterloo algorithm or our original algo-
rithm.

5.5 A Simple Index Calculus Method for Fields
Fp

It is clear that the simple method for fields Fpk which was presented in Section
5.2 can be modified to apply to fields of prime power order Fp. This view is, in
fact, somewhat backward: the original description of that algorithm given by
Hellman and Reyneri [32] was a generalisation of an earlier algorithm due to
Adleman [1] which applied to prime order fields. We describe the basic changes
between the two algorithms and, while we do not derive a complexity estimate,
give Adleman’s estimate and some references to relevant material.

Only one major change to the algorithm has to be made - the factor base.
We still select a smoothness parameter b, although this time it is taken from
the set {2, 3, . . . , p− 1}. Our factor base is then the set of all primes p ≤ b. The
concept of a smooth integer is defined in the expected manner - an integer is
b-smooth if all of its prime divisors are ≤ b. The rest of the algorithm proceeds
in the same way.

In the case of Fp, the size of the factor base is equal to the number of primes
≤ b. The function which counts the number of primes below some given bound
is usually denoted π, with π(x) being the number of primes ≤ x. This function is
very well studied and a number of approximations and other results are known.
For instance, it is true that:

π(x) < 1.25506
x

log(x)
,

for x > 1. Further reading on the prime counting function can be found in
Ribenboim’s book [63]. A number of algorithms for evaluating π(x) can be
found in a paper by and J. Lagarias, V. Miller and Odlyzko [38].

The number of field elements which can be factorised over the factor base
is equal to the number of smooth integers ≤ b. The function which counts the
number of b-smooth integers below some given bound for a given b is usually
denoted Ψ, where Ψ(x, b) is the number of b-smooth integers ≤ x. This function
is also well studied, mainly in terms of its asymptotic behaviour. D. J. Bernstein

5.6. AN IMPROVED METHOD FOR SOME FIELDS FP 81

has published an algorithm for the fast computation of arbitrarily tight bounds
on the function Ψ [6]. This paper includes the URL for software written by
Bernstein to compute these bounds on a personal computer, and also gives
many references to earlier work on the subject of Ψ, both computational and
theoretical.

In the case of Fp, the many factorisations involved in the algorithm are
factorisations of integers, which we have not considered in this thesis. Unlike
the problem of polynomial factorisation, the factorisation of integers is very
difficult - so difficult that the infeasability of large factorisations is used to
provide security in some cryptosystems, just like the DLP! The RSA algorithm
[64] is such a cryptosystem, and was in fact the first public key cryptosystem
developed. Because of this application to cryptography, the problem of integer
factorisation has been studied extensively and a number of algorithms for the
task exist. Unfortunately, space limitations prevent us from giving even a brief
overview. The interested reader is given the following references to the three
well-known and widely used modern algorithms:

1. The Quadratic Sieve, invented by C. Pomerance in 1984 [62].

2. The Elliptic Curve Factorisation Method, invented by H. W. Lenstra Jr.
in 1987 [42].

3. The Number Field Sieve, invented by A. K. Lenstra, H. W. Lenstra Jr.,
M. S. Manasse and J. M. Pollard in 1990 [41].

These are by no means the only known factorisation algorithms more efficient
than trial division, but they are the fastest for general factorisations and the
most likely to be useful in an index calculus algorithm for large prime order
fields. We note briefly that while the running time when using either of the sieve-
based methods to factor an integer is independent of the size of that integer’s
factors, the elliptic curve method will factor an integer quicker if it has small
factors, as is the case when the integer is smooth.

Adleman finds the complexity of this method to be:

exp
(
c
√

log(p) log(log(p))
)

,

for a constant c.

5.6 An Improved Method for Some Fields Fp

The method described above is by no means the only index calculus method for
finite fields Fp. We detail one more efficient alternative method here, and give
reference to another.

The method we will now consider was presented by D. Coppersmith, A.
Odlzyko and R. Schroepell in 1986 [21], which works for fields of prime order p ≡
1 (mod 4). This method was used by B. A. LaMacchia and Odlzyko in 1991 to
readily compute logarithms in the field Fp for a certain 192-bit prime p which was
actually used by Sun Microsystems in the security component of their Network
File System (NFS). Their work is described in [40]. Our examination of this
method is the one place in this thesis where we depart from the representation
of Fp as the ring of integers modulo p. Here we use the representation of the

82 CHAPTER 5. INDEX CALCULUS ALGORITHMS

field as a factor ring of the Gaussian integers. This representation allows a more
efficient method for generating relations than that described above. We begin
by quickly presenting the relevant theory on Gaussian integers, omitting the
proof of a well known and easily derived result.

Field Representation Using the Gaussian Integers

Definition 5.6.1. The Gaussian Integers

The ring of Gaussian integers is the integral domain:

Z[i] = {a + bi|a, b ∈ Z}

Definition 5.6.2. The Norm of a Gaussian Integer

The norm of a Gaussian integer z = a+bi, denoted N(z), is the non-negative
integer:

N(z) = a2 + b2

Lemma 5.6.3. Multiplicativity of the Norm

If z1, z2 ∈ Z[i], then:

N(z1z2) = N(z1)N(z2)

Proof: Omitted.
The following theorem was first claimed by Fermat in 1640, although no

proof of his has been found. The first known proof is due to Euler in 1749. The
proof we present here is adapted from one given by Fraleigh [26]. This proof
combines with the previous lemma to give a field representation theorem which
is the basis for this index calculus method.

Theorem 5.6.4. Prime Numbers as the Sum of Two Squares

Let p be a prime number which satisfies p ≡ 1 (mod 4). Then there exist
natural numbers a and b such that p = a2 + b2.

Proof: We begin by considering Zp, the multiplicative group of units modulo
p. This a cyclic group of order p−1. Since p ≡ 1 (mod 4), p−1 is divisble by 4.
Suppose p−1 = 4k and let α be a generator of Zp. Then αk is an element of Zp

with multiplicative order 4 and consequently α2 ≡ −1 (mod p), i.e. p|α2 + 1.
Considered as an element of Z[i], α2 + 1 has the factorisation (α + i)(α− i).

Suppose that p is irreducible in Z[i]. Then, by our above factorisation of α2 +1,
p must divide either α + i or α − i. Suppose that p divides α + i. Then
α + i = p(a + bi) for some a, b ∈ Z. Equating the coefficients of i in this
equation, we get that pb = 1, which is impossible. Similarly, if p divided α − i
then we could arrive at the equation pb = −1, which is also impossible. So p is
not irreducible.

Since p is not irreducible, there must exist Gaussian integers z1 = a1+b1i and
z2 = a2 + b2i such that p = z1z2. Taking the norm of each side of this equation
and using Lemma 5.6.3 we see that p2 = (a2

1 + b2
1)(a

2
2 + b2

2), an equation in Z.
Since p is a prime number, it must be the case that (a2

1 + b2
1) = (a2

2 + b2
2), i.e.

5.6. AN IMPROVED METHOD FOR SOME FIELDS FP 83

p = a2 + b2 for some a, b ∈ Z. Clearly we may assume a and b to be positive
and also clearly neither of them may be 0, so a, b ∈ N.

¤

It is actually possible to show a stronger result than this: if a prime p can be
expressed as a sum of two squares then it must satisfy p ≡ 1 (mod 4), and the
expression of a prime of this form as the sum of two squares is unique. These
two properties will not be used here. The interested reader may find a proof of
the first property in Fraleigh [26], and of the second part in a paper by Brillhart
[12].

We now prove the main result of this section. This proof is adapted from
[23].

Theorem 5.6.5. Field Representation Theorem

Let p be a prime number satisfying p ≡ 1 (mod 4). Then there exists a
Gaussian integer z ∈ Z[i] such that:

R =
Z[i]
〈z〉
∼= Zp,

and so R can be used as a representation for Fp.

Proof: We begin by identifying the relevant Gaussian integer z. By Theorem
5.6.4, there exist a, b ∈ N such that p = a2 + b2. We may set z = a + bi or
z = b + ai.

Define the map φ : Z[i]→ Zp according to the rule:

φ : x + yi 7→ x− ab−1y (mod p).

We show first that this map is a homomorphism.
Let z1 = x1 + y1i, z2 = x2 + y2i. Then:

φ(z1) + φ(z2) = x1 − ab−1y1 + x2 − ab−1y2 (mod p)

≡ (x1 + x2)− ab−1(y1 + y2) (mod p)
= φ((x1 + x2) + (y1 + y2)i)
= φ(z1 + z2),

i.e. φ preserves the additive structure of Z[i]. To show that it also preserves
the multiplicative structure, we need to make the observation that b2 ≡ −a2

(mod p = a2 + b2), so (ab−1)2 ≡ −a2a−2 ≡ −1 (mod p). With this in mind:

φ(z1)φ(z2) = φ(x1 + y1i)φ(x2 + y2i)

= (x1 − ab−1y1)(x2 − ab−1y2) (mod p)

≡ x1x2 − ab−1(x1y2 + x2y1) + (ab−1)2y1y2 (mod p)

≡ (x1x2 − y1y2)− ab−1(x1y2 + x2y1) (mod p)
= φ((x1x2 − y1y2) + (x1y2 + x2y1)i)
= φ(z1z2).

84 CHAPTER 5. INDEX CALCULUS ALGORITHMS

So φ also preserves the multiplicative structure of Z[i] and hence is a homor-
phism. Now we show that ker(φ) = 〈z〉.

We begin by noting that φ(z) = a − ab−1b = a − a = 0, so, since φ is a
homomorphism, any multiple of z maps to zero and hence 〈z〉 ⊆ ker(φ). We now
show the reverse inclusion, and hence equality. Suppose that x = c+di ∈ ker(φ).
We consider x as an element of C rather than Z[i] and write the division:

x

z
=

c + di

a + bi
= y =

ac + bd

a2 + b2
+

ad− bc

a2 + b2
i. (5.11)

Since x ∈ kerφ, we have φ(x) = c − ab−1d ≡ 0 (mod p), an equation in Zp.
Multiplying this equation by b and using the commutativity of Zp we get:

bc− ad ≡ 0 (mod p). (5.12)

Multiplying this by −1 and expanding p, ad − bc ≡ 0 (mod a2 + b2). This
implies that the imaginary part of y, as expressed in 5.11, is an integer. Similarly,
multiplying (5.12) by ab gives ab2c − a2bd ≡ 0 (mod p), and then multiplying
by b−2 gives ac − (ab−1)2bd ≡ ac + bd ≡ 0 (mod p), where we have used our
earlier observation that (ab−1)2 ≡ −1 (mod p). This congruence implies that
the real part of y is also an integer, so y ∈ Z[i]. Consequently x is a Gaussian
integer multiple of z, so x ∈ 〈z〉 and hence ker(φ) ⊆ 〈z〉. Together with the
reverse inclusion shown earlier, this gives ker(φ) = 〈z〉.

Since φ is a homomorhism with ker(φ) = 〈z〉, it follows from the well known
homomorphism theorem for rings that the factor ring R is isomorphic to the the
image φ(Zp). This image is clearly Zp itself, as for any a ∈ Zp, we have a ∈ Z[i]
with φ(a) = a. So R ∼= Zp.

¤

Thus we have a new representation of Fp. We will see that an efficient index
calculus algorithm for Fp can be constructed using this representation. If we are
given a DLP in Fp posed using the integer representation of Fp, wishing to find
logα(β) as usual, we may compute φ(α) and φ(β) and the find logφ(α)(φ(β))
in the Gaussian integer representation using this index calculus algorithm. It
is clear that these two logarithms will be the same. On a practical note, in
order to perform computations in Fp using the Gaussian integer representation
we need to be able to find the unique a and b such that p = a2 + b2. The
simple proof we offered of the existence of this decomposition, howerver, was
non-constructive. Constructive proofs exist, and are based on the concept of
continued fractions. An efficient algorithm for finding, given a prime p ≡ 1
(mod 4), a and b satisfying p = a2 + b2 is given by Brillhart [12].

Choice of Factor Base

Supposing we have found a Gaussian integer z = a + bi such that Z[i]/〈z〉 is a
representation of our field of interest, then we define a factor base as follows.
Select a smoothness parameter B and include in the factor base:

1. All irreducible Gaussian integers (“Gaussian primes”) zi with norm satis-
fying N(zi) ≤ B,

2. All prime numbers pi ≤ B,

5.7. FURTHER READING 85

3. The imaginary part of z, b.

The reason for this choice of factor base will become clear soon when we discuss
our method for obtaining relations between the factor base elements.

Generating Relations

Observe that, for c1, c2 ∈ Z, we have:

c1b− c2a = b(c1 + c2i)− c2(a + bi) (5.13)
= b(c1 + c2i)− c2z (5.14)
≡ b(c1 + c2i) (mod z). (5.15)

If the integer c1b − c2a is smooth with respect to the primes p1, p2, . . . , pm

of our factorbase and the Gaussian integer b(c1 + c2) is smooth with respect
to the Gaussian primes z1, z2, . . . , zn, then (5.15) provides a relation between
factorbase elements. The relative sizes of a and b, as well as c1 and c2 will
influence the probability of successfully obtaining a relation in this way. If
c1 and c2 can be chosen so that c1b − c2a is a “small” integer and (c1 + c2i)
is a Gaussian integer of “small norm”, then the likelihood of success will be
increased. By using the above result with several values of c1 and c2, we can
obtain a number of relations in a more systematic and efficient way than our
earlier random exponentiation and factorisation.

5.7 Further Reading

Coppersmith’s algorithm for fields of characteristic 2 is the fastest index calculus
algorithm known for these fields. However, the algorithms we have shown for
other fields can be improved upon. Unfortunately, the fastest algorithms rely
upon the number field sieve algorithm for factoring integers (mentioned earlier
in this chapter, see [41]) and their description is well beyond the level of theory
developed in this thesis. The fastest algorithms are both due to D. Gordon. For
fields of prime order, see [30]; this algorithm is a generalisation of the Gaussian
integer method from Section 5.6 to different number fields. For fields of prime
power order, see [29].

We also mention an earlier index calculus algorithm due to Elgamal [25]
which works for finite fields Fp2 . This algorithm is slower than Gordon’s later
algorithm, but for large p it is faster than the Waterloo algorithm, making it
the fastest algorithm available for these fields at the time of its publication.

A paper by T. Garefalakis and Panario [27] considers the possibility of using
a factor base in index calculus algorithms for fields Fpn other than the usual
choice of all irreducible polynomials of degree below some bound. In particular,
the analyse an index calculus algorithm where the factor base is all irreucible
polynomials of degree between a lower and upper bound. They show that such
an algorithm is asymptotically as fast as that using the standard factor base,
however in practice there is little benefit in the change. The generalisations of
the Waterloo variant and Coppersmith’s method to this new factor base are also
considered.

Finally, we mention that index calculus algorithms are not limited to finite
fields, although this is certainly the situation in which they have been the most

86 CHAPTER 5. INDEX CALCULUS ALGORITHMS

well studied and often used. In a paper by R. Granger and F. Vercauteren [31]
we see the development of an index calculus algorithm for solving the DLP
on an algebraic torus. Algebraic tori are a certain kind of subgroup of F∗q
which have lately attracted attention as possible settings for efficient DLP based
cryptography. In the references of [31], we see index calculus algorithms for
abelian varieties and for hyperelliptic curves.

Appendix A

Computer Code

This chapter contains listings of computer code implementations of many of the
algorithms discussed in this thesis.

A.1 The GNU Multiple Precision Library

The GNU Multiple Precision Library (GMP library) is “a free library for arbi-
trary precision arithmetic, operating on signed integers, rational numbers, and
floating point numbers. There is no practical limit to the precision except the
ones implied by the available memory in the machine GMP runs on. GMP
has a rich set of functions, and the functions have a regular interface”. More
information can be found at: http://www.swox.com/gmp/ (the source of the
preceeding quotation).

Multiplication of integers is performed in GMP via multiplying polynomials,
as discussed in 2.2.1. The Karatsuba multiplication algorithm discussed in 2.2.3
and the Fast Fourier Transform multiplication algorithm discussed in 2.2.4 are
used for this, depending upon which is fastest for the particular polynomials
involved. A fast algorithm is available for modular exponentiation, as is a fast
implementation of the Extended Euclidean Algorithm.

The integer arithmetic functions of the GMP library have be used to imple-
ment some of the algorithms discussed in this thesis for finite fields of prime
order.

A.2 Pollard’s ρ-method

The following program, written in C, provides an implementation of Pollard’s
ρ-method for computing discrete logarithms in finite fields of prime order. The
GMP library provides fast integer arithmetic. The function pollardrho accepts
as arguments a pointer to an mpz t type variable and 3 mpz t type variables
- a group element h, a group generator g and a group order p. The discrete
logarithm of h to the base g is computed and stored in the variable pointed
to by the first argument. This function repeatedly calls iterate to update
the sequence variables. The main program in this code listing simply accepts
commandline inputs for g, h and p, calls pollardrho and prints the result.

87

88 APPENDIX A. COMPUTER CODE

#include <stdio.h>
#include <time.h>
#include <gmp.h>

/* Function prototypes */

int pollardrho(mpz_t *result, mpz_t h, mpz_t g, mpz_t p);
void iterate(mpz_t *x, mpz_t *a, mpz_t *b);

/* Global variables */

mpz_t h, g, p, pminus1;
gmp_randstate_t state;

/****************
* Main program *
****************/

int main(int argc, char *argv[]) {

/* Initialise and set global variables */

mpz_init_set_str(h,argv[1],10);
mpz_init_set_str(g,argv[2],10);
mpz_init_set_str(p,argv[3],10);
mpz_init(pminus1);
mpz_sub_ui(pminus1,p,1);

/* Prepare random number generator and seed by time */

unsigned long int timeseed;
time(×eed);
gmp_randinit_default(state);
gmp_randseed_ui(state,timeseed);

/* Compute, store and display logarithm */

mpz_t result;
mpz_init(result);
pollardrho(&result,h,g,p);
gmp_printf("Logarithm of %Zd to base %Zd in Z*(%Zd) is %Zd.\n", \

h, g, p, result); */

}

/*********************************
* Pollard’s rho-method function *
*********************************/

int pollardrho(mpz_t *result, mpz_t h, mpz_t g, mpz_t p) {

A.2. POLLARD’S ρ-METHOD 89

/* Randomly set initial sequence terms */

mpz_t a1, b1, x1, a2, b2, x2, temp;
mpz_init(a1); mpz_init(b1), mpz_init(x1); mpz_init(temp);
mpz_urandomm(a1,state,p); mpz_urandomm(b1,state,p);
mpz_powm(x1,g,a1,p); mpz_powm(temp,h,b1,p);
mpz_mul(x1,x1,temp); mpz_mod(x1,x1,p); mpz_clear(temp);
mpz_init(a2); mpz_init(b2); mpz_init(x2);
mpz_set(a2,a1); mpz_set(b2,b1); mpz_set(x2,x1);

/* Use Floyd’s algorithm to find sequence colliison */

do {
iterate(&x1,&a1,&b1);
iterate(&x2,&a2,&b2);
iterate(&x2,&a2,&b2);

} while (mpz_cmp(x1,x2)!=0);

/* Construct linear congruence */

mpz_t a, b; /* a(log) = b (mod p-1) */
mpz_init(a); mpz_init(b);
mpz_sub(b,a2,a1); mpz_mod(b,b,pminus1);
mpz_sub(a,b1,b2); mpz_mod(a,a,pminus1);
mpz_clear(a1); mpz_clear(a2); mpz_clear(b1); mpz_clear(b2);

/* Ensure congruence is non-trivial and retry if not */

if(mpz_cmp_ui(a,0)==0) {
pollardrho(result,h,g,p);

}

/* Solve linear congruence if possible and retry otherwise */

mpz_t gcd, soln;
mpz_init(gcd); mpz_init(soln);
mpz_gcdext(gcd,soln,NULL,a,pminus1);
if(mpz_divisible_p(b,gcd)) {

/* Congruence has a solution, solve it */
mpz_mul(soln,b,soln);
mpz_div(soln,soln,gcd);
mpz_mod(soln,soln,pminus1);

} else {
/* Congruence has no solution, try again */
pollardrho(result,h,g,p);

}

/* Perform trial exponentiation on candidates */

90 APPENDIX A. COMPUTER CODE

mpz_t step, trial;
mpz_init(step); mpz_init(trial);
mpz_div(step,pminus1,gcd);
mpz_mod(soln,soln,step);

while(1) {
mpz_powm(trial,g,soln,p);
if(mpz_cmp(trial,h)==0) break;
else mpz_add(soln,soln,step);

}

/* Store result */

mpz_set(*result,soln);

}

/************************************
* Rho sequence updating subroutine *
************************************/

void iterate(mpz_t *x, mpz_t *a, mpz_t *b) {

if(mpz_congruent_ui_p(*x,0,3)) {
mpz_mul(*x,*x,*x);
mpz_mod(*x,*x,p);
mpz_mul_ui(*a,*a,2);
mpz_mod(*a,*a,pminus1);
mpz_mul_ui(*b,*b,2);
mpz_mod(*b,*b,pminus1);

} else if(mpz_congruent_ui_p(*x,1,3)) {
mpz_mul(*x,g,*x);
mpz_mod(*x,*x,p);
mpz_add_ui(*a,*a,1);
mpz_mod(*a,*a,pminus1);

} else if(mpz_congruent_ui_p(*x,2,3)) {
mpz_mul(*x,h,*x);
mpz_mod(*x,*x,p);
mpz_add_ui(*b,*b,1);
mpz_mod(*b,*b,pminus1);

}

}

Bibliography

[1] L. Adleman, A subexponential algorithm for the discrete logarithm problem
with applications to cryptography, Proceedings of the IEEE 20th Annual
Symposium on Foundations of Computer Science (1979), 55–60.

[2] Iris Anshel, Michael Anshel, and Goldfeld Dorian, An algebraic method for
public-key cryptography, Mathematical Research Letters 6 (1999), 287–291.

[3] Elwyn R. Berlekamp, Factoring polynomials over finite fields, Bell Systems
Technical Journal 46 (1967), 1853–1859.

[4] , Algebraic coding theory, McGraw-Hill, 1968.

[5] , Factoring polynomials over large finite fields, Mathematics of Com-
putation 24 (1970), 713–735.

[6] Daniel J. Bernstein, Arbitrarily tight bounds on the distribution of smooth
integers, http://cr.yp.to/papers/psi.pdf (2000).

[7] , Multidigit multiplication for mathematicians, http://cr.yp.to/
papers/m3.pdf (2001).

[8] I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone, Computing
logaithms in finite fields of characteristic two, SIAM Journal of Algorithmic
and Discrete Mathematics 5 (1984), 276–285.

[9] Ian F. Blake, XuHong Gao, Ronald C. Mullin, Scott A. Vanstone, and
Tomik Yaghoobian, Applications of finite fields, Kluwer Academic Publish-
ers, 1993.

[10] J.V. Brawle and Carlitz L., Irreducibles and the composed product for poly-
nomials over a finite field, Discrete Mathematics 65 (1987), 115–139.

[11] Richard P. Brent, An improved monte carlo factorization algorithm, BIT
20 (1980), 176–184.

[12] John Brillhart, Note on representing a prime as a sum of two squares,
Mathematics of Computation 26 (1972), 1011–1013.

[13] M. C. R. Butler, On the reducibility of polynomials over a finite field, Quar-
terly Journal of Mathematics, Oxford Series 2 5 (1954), 102–7.

[14] David G. Cantor and Erich Kaltofen, On fast multiplication of polynomials
over arbitrary algebras, Acta Informatica 28 (1991), 693–701.

91

92 BIBLIOGRAPHY

[15] David G. Cantor and Hans Zassenhaus, A new algorithm for factoring
polynomials over finite fields, Mathematics of Computation 36 (1981), 587–
592.

[16] J. Cheon, J. Han, J. Kang, K. Ko, S. Lee, and C. Park, New public-key
cryptosystem using braid groups, Advances in Cryptology - CRYPTO 2000.

[17] S. A. Cook, On the minimum computation time of functions, Ph.D. thesis,
Cambridge, MA: Harvard University, 1966.

[18] J.W. Cooley and J.W. Tukey, An algorithm for the machine calculation of
complex fourier series, Mathematics of Computation 19 (1965), 297–301.

[19] D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix
multiplication, SIAM Journal of Computing 11 (1982), 472–492.

[20] Don Coppersmith, Fast evaluation of logarithms in fields of characteristic
two, IEEE Transactions on Information Theory 30 (1984), 587–594.

[21] Don Coppersmith, Andrew M. Odlzyko, and Richard Schroeppel, Discrete
logarithms in GF(p), Algorithmica 1 (1986), 1–15.

[22] Whitfield Diffie and Martin E. Hellman, New directions in cryptography,
IEEE Transactions on Information Theory IT-22 (1976), 644–654.

[23] Greg Dresden and Dymàček, Finding factors of factor rings over the gaus-
sian integers, American Mathematical Monthly 112 (2005), 602–611.

[24] Taher Elgamal, A public key cryptosystem and a signature scheme based
on discrete logarithms, IEEE Transactions on Information Theory IT–31
(1985), 469–472.

[25] , A subexponential-time algorith for computing discrete logarithms
over GF(p2)., IEEE Transactions on Information Theory 31 (1985), 473–
481.

[26] Jonh B. Fraleigh, A first course in abstract algebra, Addison Wesley Pub-
lishing Company, 2003.

[27] Theodoulos Garefalakis and Daniel Panario, The index calculus algorithm
using non-smooth polynomials, Mathematics of Computation 70 (2001),
1253–1264.

[28] O. Goldreich, S. Goldwasser, and S. Halevi, Public key cryptosystems from
lattice reduction problems, Advances in Cryptology - CRYPTO ’97 1294
(1997), 112–131.

[29] D. Gordon, Discrete logarithms in GF(pn) using the number field sieve,
(1991).

[30] , Discrete logarithms in GF(p) using the number field sieve, SIAM
Journal of Discrete Mathematics 6 (1993), 124–138.

[31] R. Granger and F. Vercauteren, On the discrete logarithm problem on al-
gebraic tori, Proceedings of Crypto 2005 3621.

BIBLIOGRAPHY 93

[32] Martin E. Hellman and J. M. Reyneri, Fast computation of discrete loga-
rithms in GF(q), Advances in Cryptology - Proceedings of CRYPTO ’82
(1983), 3–13.

[33] Erich Kaltofen and Victor Shoup, Subquadratic-time factoring of polynomi-
als over finite fields, Mathematics of Computation 67 (1998), 1179–1197.

[34] A. Karatsuba, Doklady Akademia Nauk SSSR 145 (1962), 293–294.

[35] Donald E. Knuth, The art of computer programming - volume 3 / sorting
and searching, Addison Wesley Publishing Company, 1973.

[36] Neal Koblitz, Elliptic curve cryptosystems, Mathematics of Computation
48 (1987), 203–209.

[37] Lydia Kronsjö, Computational complexity of sequential and parallel algo-
rithms, John Wiley and Sons, 1985.

[38] J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing π(x): The
meissel-lehmer method, Mathematics of Computation 44 (1985), 537–560.

[39] B. A LaMacchia and A. M. Odlyzko, Solving large sparse linear systems
over finite fields, Advances in Cryptology - Proceedings of CRYPTO ’90
(1990), 109–133.

[40] B. A. LaMachia and A. M. Odlyzko, Computation of discrete logarithms in
prime fields, Designs, Codes and Cryptography 1 (1991), 47–62.

[41] A. K. Lenstra, H. W. Jr. Lenstra, M. S. Manasse, and J. M. Pollard, The
number field sieve, Proceedings of the Twenty-second Annual ACM Sym-
posium on Theory of Computing (1990), 564–572.

[42] H. W. Jr. Lenstra, Factoring integers with elliptic curves, Annals of Math-
ematics (1987), 649–673.

[43] Jr. Lenstra, H. W and C. P. Schnorr, Mathematics of Computation 43
(1984), 289–311.

[44] Rudolph Lidl and Harald Niederreiter, Finite fields, Cambridge University
Press, 1997.

[45] Wenbo Mao, Modern cryptography: Theory and practice, Prentice Hall
PTR, 2004.

[46] R. J. McEliece, A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress Report 42–44 (1978), 114–116.

[47] Alfred Menezes, Paul C. Van Oorschot, and Scott A. Vanstone, Handbook
of applied cryptography, CRC Press, Inc., 1997.

[48] Maurice Mignotte and Doru Ştefănescu, Polynomials; an algorithmic ap-
proach, Spring Verlag, 1999.

[49] J.C.P. Miller and Western A. E., Tables of indices and primitive roots,
Royal Society Mathematical Tables 9 (1968).

94 BIBLIOGRAPHY

[50] R. T. Moenck, Fast computation of GCDs, Proceedings of the Fifth Annual
ACM Symposium on Theory of Computing (1973), 142–151.

[51] Robert T. Moenck, Practical fast polynomial multiplication, Proceedings of
the ACM Symposium on Symbolic and Algebraic Computation (1976).

[52] Peter Montgomery, Modular multiplication without trial division, Mathe-
matics of Computation 44, 519.

[53] Harald Niederreiter, A new efficient factorization algorithm for polynomials
over small finite fields, Appl. Alg. Eng. Comm. Comp. (1993), 81–87.

[54] A. Odlyzko, Discrete logarithms and their cryptographic significance, Pro-
ceedings of Eurocrypt 1984 209 (1985), 224–314.

[55] U.S. Department of Commernce / National Institute of Standards and
Technolgoy, Digital Signature Standard (DSS), http://csrc.nist.gov/
publications/fips/fips186-2/fips186-2-change1.pdf.

[56] Daniel Panario, What do random polynomials over finite fields look like?,
Proceedings of the Seventh International Conference on Finite Fields: The-
ory, Applications, and Algorithms (2004), 89–108.

[57] Stephen C. Pohlig and Martin E. Hellman, An improved algorithm for
computing logarithms over GF(p) and its cryptographic significance, IEEE
Transactions on Information Theory IT-24 (1978), 106–110.

[58] J. M. Pollard, The fast fourier transform in a finite field, Mathematics of
Computation 25 (1971), 265–74.

[59] , A monte carlo method for factorization, BIT 15 (1975), 331–334.

[60] , Monte carlo methods for index computation (mod p)., Mathmat-
ics of Computation 32 (1978), 918–924.

[61] , Kangaroos, monopoly and discrete logarithms, Journal of Cryptol-
ogy 13 (2000), 437–447.

[62] Carl Pomerance, The quadratic sieve factoring algorithm, Proceedings of
Eurocrypt 1984 (1984), 169–182.

[63] Paulo Ribenboim, The new book of prime number records, Springer, 2004.

[64] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM 21
(1978), 120–126.

[65] Bruce Schneier, Applied cryptography, John Wiley and Sons, Inc., 1996.

[66] Claus P. Schnorr, Efficient signature generation by smart cards, Journal of
Cryptology 4 (1991), 161–174.

[67] A. Schönhage, Schnelle multiplikation von polynomen über körpen der
charakteristik 2, Acta Informatica 7 (1977), 395–398.

BIBLIOGRAPHY 95

[68] A. Schönhage and V. Strassen, Schnelle multiplikation großer zahlen, Com-
puting 7 (1971), 281–292.

[69] Victor Shoup, On the deterministic complexity of factoring polynomials
over finite fields, Information Processing Letters 33 (1990), 261–267.

[70] , Fast construction of irreducible polynomials over finite fields, Jour-
nal of Symbolic Computation 17 (1993), 371–391.

[71] , Lower bonds for discrete logarithms and related problems, Proceed-
ings of Eurocrypt 1997 (1997).

[72] Igor E. Shparlinski, Finite fields: Theory and computation, Kluwer Aca-
demic Publishers, 1999.

[73] V. Strassen, Gassian elimination is nhot optimal, Numerical Mathematics
13 (1969), 354–356.

[74] Edlyn Teske, On random walks for pollard’s rho method, Mathematics of
Computation 70 (2001), 809–825.

[75] A. L. Toom, The complexity of a scheme of functional elements simulating
the multiplication of integers, Doklady Academic Nauk SSSR 150 (1963),
496–498.

[76] P. V. Trifonov and S. V. Fedorenko, A method for fast computation of the
fourier transform over a finite field, Problems of Information Transmission
39 (2003).

[77] Paul C. van Oorschot and Michael J. Wiener, Parallel collision search with
cryptanalytic applications, Journal of Cryptology 12 (1999), 1–28.

[78] Joachim von zur Gathen and Victor Shoup, Computing frobenius maps and
factoring polynomials, Computational Complexity 2 (1992), 97–105.

[79] D. H. Widemann, Solving sparse linear equations over finite fields, IEEE
Transactions on Information Theory 32 (1986), 54–62.

[80] N. Zierler, A conversion algorithm for logarithms on GF(2n), Journal of
Pure and Applied Algebra 4 (1974), 353–356.

