
Why are some word orders more common than
others? A uniform information density account

Luke Maurits, Amy Perfors & Daniel Navarro
School of Psychology,
University of Adelaide,

Adelaide, South Australia, 5000
{luke.maurits, amy.perfors, daniel.navarro}@adelaide.edu.au

Abstract

Languages vary widely in many ways, including their canonical word order. A
basic aspect of the observed variation is the fact that some word orders are much
more common than others. Although this regularity has been recognized for
some time, it has not been well-explained. In this paper we offer an information-
theoretic explanation for the observed word-order distribution across languages,
based on the concept of Uniform Information Density (UID). We suggest that
object-first languages are particularly disfavored because they are highly non-
optimal if the goal is to distribute information content approximately evenly
throughout a sentence, and that the rest of the observed word-order distribution
is at least partially explainable in terms of UID. We support our theoretical analy-
sis with data from child-directed speech and experimental work.

1 Introduction

Many of the world’s languages are sensitive to word order. In these languages, the order in which
words are spoken conveys a great deal of the sentence’s meaning. The classic English example is
the distinction between “dog bites man” and “man bites dog”, which differ in terms of who is biting
whom. The so-called “basic” word order of a language is defined according to the order of three
of the principal components of basic transitive sentences: subject (S), verb (V) and object (O). This
results in six logically distinct word orders: SOV, SVO, VSO, VOS, OVS and OSV (e.g., English
has SVO basic word order). Curiously, the world’s order-sensitive languages make use of these
six possibilities in an uneven fashion. According to a survey of 402 languages [17], the majority
of languages are either SOV (44.78%) or SVO (41.79%). VSO (9.20%) is much less frequent but
still significant, and very few languages make use of VOS (2.99%), OVS (1.24%) or OSV (0.00%)
as their basic word order. Broadly speaking, the basic pattern appears to be (SOV, SVO) > VSO
> (VOS, OVS) > OSV. This non-uniformity is a striking empirical finding that demands some
explanation. Unfortunately, most of the explanations that have been offered are either proximate
explanations that simply shift the question, or else are circular.

One of the most straightforward explanations is that the observed word order frequencies may be the
consequence of genetically encoded biases toward particular orders, as part of the universal grammar
hypothesis; this possibility is considered in [4]. However, this can be only a proximate explanation:
why does our genetic endowment happen to bias us in the particular way that it does? And if there
is nothing special about the observed distribution – if it is not an adaption to the environment –
why have thousands of years of adaption and genetic drift not blurred it into something closer to
uniformity?

A similar objection can be made against the proposal that all languages which are alive today de-
scend from a single common ancestor, and that this proto–language used SOV word order [8], ex-
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plaining the observation that SOV is the most common word order today. If there is nothing special
about SOV, why has random drift (this time in language evolution, not human genetic evolution)
not more significantly changed the word order distribution from its ancient form? Furthermore, it
is clear that ancient SOV languages must have changed into SVO languages much more frequently
into than, say, VOS languages in order to arrive at the current state of affairs. Common descent from
SOV cannot explain this by itself.

Another explanation seeks to derive word order frequencies as a consequence of more fundamental
or general linguistic principles. Three such principles are presented in [17]: the “theme-first princi-
ple”, “verb-object bonding” and the “animate-first principle”. These principles do an excellent job
of explaining the observed word order frequencies; the frequency of each word order is proportional
to the number of the principles which that word order permits to be realized (all three principles are
realized in SOV and SVO, two are realized in VSO, one in VOS and OVS, and none in OSV). How-
ever, these principles are primarily motivated by the fact that a large body of cross-linguistic data is
consistent with them. Without a deeper justification, they are, in essence, a useful recharacterization
of the data; to offer them as explanations of patterns in that data is circular. In other words, it is not
clear why these principles work.

In this paper we propose a novel explanation for the observed distribution of word orders across
languages, based on uniform information density (UID). The UID hypothesis [13, 10] suggests that
language producers unconsciously endeavor to keep the rate of information transmission as close to
constant as possible when speaking. We use the term “information” here in its information-theoretic
sense of reduction of entropy (uncertainty) of a random variable (where the random variable is the
underlying meaning of an utterance). Conveying information via speech with a uniform information
density represents an optimal solution to the computational problem of conveying information over
a noisy channel in a short time with low probability of error. A listener’s comprehension of an
utterance is made more difficult if a syllable, word or clause which carries a lot of information is lost
due to ambient noise or problems with articulation or perception. The most error resistant strategy is
therefore to convey minimal information with each unit of speech. Unfortunately, this leads to other
problems – namely, that it will take excessive time to convey any meaningful quantity of information.
The best trade off between time efficiency and error resistance is to spread information content as
equally as possible across units and have each unit carry as much information as it can without
exceeding the threshold for error correctability (the channel capacity). Also, UID minimizes the
difficulty involved in online sentence processing, assuming that the difficulty of processing a speech
unit increases superlinearly with that unit’s surprisal [13].

The UID hypothesis is supported by a range of empirical evidence. It suggests that speakers should
attempt to slow down the rate at which information is conveyed when unexpected, high entropy
content is being discussed, and increase the rate when predictable, low entropy content is being
discussed. This prediction is supported by findings indicating that certain classes of words [1] and
syllables [3] are spoken more slowly in unexpected contexts. In addition, analysis of corpus data
suggests that the entropy of sentences taken out of context is higher for sentences further into a body
of text [7, 12]. Furthermore, the use of both optional contractions (e.g., “you are” vs. “you’re”)
[2] and optional function words in relative clauses (e.g., “how big is the house that you live in?”
vs. “how big is the house you live in?”) [14, 11] appears to be affected by information density
considerations, with contractions used less often when the relative clause is unexpected.

We propose that the basic word order of a language influences the average uniformity of information
density for sentences in that language, and that a preference for languages that are closer to the UID
ideal can explain some of the structure in the observed distribution over basic word orders. The
layout of the rest of the paper is as follows. In Section 2 we describe the underlying conceptual
model and terminology using a simple illustrative example. In Section 3,

2 Development of hypothesis and illustrative examples

This work is based on a simple probabilistic model of language production. We assume that lan-
guages are grounded in a world, consisting of objects (elements of a set O) and actions (which are
binary relations between objects, and elements of a setR, such that if r ∈ R then r ⊂ O ×O). An
event in the world is a triple consisting of a relation r and two objects o1, o2 and is written (o1, r, o2).
Events in the world are generated probabilistically in a sequential fashion, as independent identically
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distributed draws from a probability distribution P over the set of events O ×R × O. We assume
that a language consists of nouns (each of which corresponds to a unique object) and verbs (each of
which corresponds to a unique action). Utterances are generated from events by combining the three
relevant words in one of the six possible orders. Each utterance is therefore three words long (there
are no function words in the model). This defines a probabilistic generative model for three-word
utterances.

To make this idea more concrete, we construct a simple toy world consisting of thirteen objects
and two relations. Five of the objects represent individual people (ALICE, BOB, EVE, MALLORY,
TRENT) and the other eight represent items which are either food (APPLE, BREAD, CAKE, RICE)
or drink (COFFEE, COLA, JUICE, WATER). The two relations are EAT and DRINK, so that the
events in this world represent particular people eating or drinking particular items (e.g. (ALICE,
DRINK, COFFEE)). Impossible events (e.g., (COFFEE, DRINK, ALICE)) are given zero probability
in the event distribution P . A diagrammatic representation of all the non-zero probabilities of P is
available in the supplementary material, but the salient features of the example are as follows: each
of the five people eat and drink equally often, and equally as often as each other; nobody drinks
foods or eats drinks; and each person has their own particular idiosyncratic distribution over which
foods they prefer to eat and which drinks they prefer to drink.

What is the link between word order and information density in this toy world? Consider a listener
who learns about events in this toy world by hearing three-word utterances (such as “Alice eats
apples” or “Bob drinks coffee”), one word at a time. Until they have heard all three words in the
utterance, there will generally remain some degree of uncertainty about what the event is, with
the uncertainty decreasing as each word is heard. Formally, the event underlying an utterance is a
random variable, and the listener’s uncertainty is represented by the entropy of that random variable.

Before any words are spoken, the observer’s uncertainty is given by the entropy of the event distri-
bution (which we refer to as the base entropy and denote H0):

H0 = H(P ) =
∑

(o1,r,o2)

−P (o1, r, o2) log(P (o1, r, o2)), (1)

where the sum is taken over all possible events in the world. After the first word, the observer’s
uncertainty about the event is reduced, and now corresponds to the entropy of one of the condi-
tional distributions, P (o1, o2|r), P (r, o2|o1) or P (o1, r|o2), depending on whether the first word
corresponds to the action (VSO or VOS word order), the person (SVO or SOV word order) or
the food/drink (OVS or OSV word order). Similarly, after the second word, the uncertainty is the
entropy of one of the conditional distributions P (o2|o1, r), P (o1|r, o2) or P (r|o1, o2), depending
again on word order. After the third word the event is uniquely determined and the entropy is zero.

This means that for any particular event, the six different choices of word order each define a differ-
ent monotonically decreasing sequence of intermediate entropies, with the first point in the sequence
always being H0 and the final point always being zero. Equivalently, the different choices of word
order result in different distributions of the total information content of a sentence amongst its con-
stituent words. We call sequences of entropies (H0, H1, H2, 0) entropy trajectories, and sequences
of information (I1 = H0 −H1, I2 = H2 −H1, I3 = H2) information profiles. Figure 1 shows the
entropy trajectories and corresponding information profiles for the event (ALICE, EAT APPLE) in
our toy world, for three different word orders. The figure demonstrates the correspondence between
trajectories and profiles, as well as the dependency of both on word order. Note that in the figure we
have normalized entropies and informations, so that H0 = 1.

If we make the simplifying assumption that all words are of equal length1, the UID hypothesis
suggests that the ideal shape of an entropy trajectory is a perfectly straight line from the initial
base entropy to the eventual zero entropy, or, equivalently, that the ideal shape of an information
profile is for each word to convey one third of the total information. Figure 1 demonstrates that
some trajectories are better realizations of this ideal than others. For example, in our toy world the
entropy trajectories for the word orders SOV, OSV and OVS (two of which are pictured in Figure 1)
are perfectly horizontal at various points (equivalently, some words carry zero information) because

1Obviously this is not true. However, in order for this simplifying assumption to skew our results, the length
of nouns would need to vary systematically depending on the relative frequency with which the nouns were the
subject and orbject of sentences, which is highly unlikely to be the case.
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Figure 1: The entropy trajectories and corresponding information profiles for the event (ALICE,
EAT, APPLE) in our toy world, for three different word orders. Dotted lines indicate the ideal
trajectory and profile according to the UID hypothesis. Observe that word orders in which the
object preceeds the verb have significant “troughs” in their information profiles, making them far
from ideal. This pattern arises because of the event structure in our toy world; our question is what
word orders are optimal given real-world event structure.

knowledge of the object in this world uniquely determines the verb (since foods are strictly eaten
and drinks are strictly drunk). Thus, any word order that places O before V renders the verb entirely
uninformative, in significant conflict with the UID hypothesis.

To formalize the intuitive notion of distance from the UID ideal we define the UID deviation score
D(I) of any given information profile I = (I1, I2, I3). D(I) is given by the formula:

D(I) =
3

4

3∑
i=1

∣∣∣∣ IiH0
− 1

3

∣∣∣∣ . (2)

It is easy to verify that the UID ideal information profile, with I1 = I2 = I3, has a deviation score
of zero, and the least-ideal profile, in which all information is conveyed by a single word, has a
deviation score of 1.

The UID deviation score allow us, for each event in the model world, to produce both an ordering of
the word orders from “most UID-like” to “least UID-like”, as well as a quantitative measure of the
extent to which each word order approaches uniform information density. We can straightforwardly
calculate a mean deviation score for the entire model world, by summing the scores for each indi-
vidual event and weighting by that event’s probability according to the event distribution P . This
lets us assess the extent to which each word order is UID-suited to a given world. For our toy world,
the ordering of word orders from lowest to highest mean deviation score is: VSO, VOS, SVO, OVS,
SOV, OSV.

Of course, our toy world is a highly contrived example, and so there is no reason to expect it to
produce the observed cross-linguistic distribution of word orders. This is because we constructed the
artificial P distribution to be pedagogically useful, not to reflect the real-world distribution of events.
The toy example is intended only as a demonstration of the core idea underlying our hypothesis: that
different choices of word order map the same probabilistic structure of the world (P ) onto different
information profiles. Since these profiles have differing levels of information density uniformity, the
UID hypothesis implies a preference ranking of word orders.

What are the mean deviation scores when the event distribution P more accurately approximates re-
ality? Does the preferred ranking of word orders implied by the UID hypothesis reflect the observed
cross-linguistic distribution of word orders? We investigate these questions in the rest of the paper.

3 Corpus analysis

Our work above implies that a particular word ordering in a language is good to the extent that it
produces minimal UID deviation scores for events in the world. Accordingly, it would be ideal to
assess the optimality of a particular word ordering with respect to the true distribution over “psy-
chologically meaningful” events in the everyday environment. Although we do not have access to
this distribution, we may be able to construct sensible approximations. One option is to assume that
spontaneous speech is informative about event probabilities – that the probability with which speak-
ers discuss an event is roughly proportional to the actual frequency or psychological importance of
that event. Guided by this assumption, in this section we estimate P on the basis of child-directed
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Figure 2: Distribution of information across words for the world instantiated from an English corpus

Figure 3: Distribution of information across words for the world instantiated from a Japanese corpus

speech corpora in two languages, English and Japanese. We use child-directed speech even though
the UID hypothesis applies equally well to adult speakers for two reasons: because child-directed
speech is more amenable to the particular analysis we provide (which requires relatively simple sen-
tences), and because children learn their language’s basic word very quickly and accurately [9, 5],
suggesting that any aspect of primary linguistic data relevant to word order learning must be present
in simple child-directed speech.

As our source of English data, we take the “Adam” transcripts from the Brown corpus [5] in the
CHILDES database [15]. From this data we extract all of the child-directed utterances involving a
random subset of the singly transitive verbs in the corpus (a total of 544 utterances). The subjects
and objects of these utterances define the set O and the verbs define the set R. In our analysis, we
treat each utterance as a distinct event, setting the probability of an event in P to be proportional to
the number of times the corresponding utterance occurs in the corpus. Thus the event distribution
P is a measure of the probability that speakers of the language choose to discuss events (rather than
their frequency in the real world). For simplicity, we ignore adjectives, plurality, tense, and so forth:
for instance, the utterances “the black cat sat on the mat” and “the cats are sitting on the soft mat”
would both be mapped to the same event, (CAT, SIT, MAT). Utterances involving pronouns which
were considered likely to refer to a wide range of objects across the corpus (such as “it”, “this”,
etc.) were discarded, while those involving pronouns which in the context of the discourse could be
expected to refer to a small set of objects (such as “he” or “she”) were retained.

Figure 2 shows the distribution of information amongst words (summarizing all of the model world’s
information profiles) for all six word orders according to the event distribution P derived from the
“Adam” transcripts. The mean deviation scores for the six word orders are (from lowest to highest)
VSO (0.38), SVO (0.41), VOS (0.48), SOV (0.64), OSV (0.78), OVS (0.79).

To guard against the possibility that these results are a by-product of the fact that English has basic
word order SVO, we repeat the method discussed above using utterances involving singly transi-
tive verbs taken from the “Asato”, “Nanami” and “Tomito” transcripts in the MiiPro corpus of the
CHILDES database, which is in Japanese (basic order SOV). From these transcripts we retreive
134 utterances. The distribution of information amongst words for the event distribution derived
from the Japanese transcripts are shown in Figure 3. The mean deviation scores are SVO (0.66),
VSO (0.71), SOV (0.72), VOS (0.72), OSV (0.82), OVS (0.83). This is not precisely the ranking
recovered from the English corpus, but there are clear similarities, which we discuss later.

4 Experiment

In the previous analyses, the event distribution P was estimated on the basis of linguistic input.
While this is sensible in many respects, it blurs the distinction between the frequency of events in
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Table 1: Objects and relations in our experiment’s model world. Asterisks denote “actor” status.

Objects APPLE, BEAR*, BED, BELLY-BUTTON, BLANKET, BUNNY*, CAT*,
CHAIR, CHEESE, COOKIE, COW*, CRACKER, CUP, DIAPER, DOOR,

DUCK*, EAR, FISH*, FLOWER, FOOT*, HAIR, HAND*, HAT, HORSE*,
KEY*, LIGHT, MILK, MOUTH*, NOSE*, OUTSIDE, PERSON*, PIG*,

SPOON*, TV, TELEPHONE, TOE*, TOOTH*, TREE, WATER
Relations BITE, DRINK, EAT, HELP, HUG, KISS, OPEN, READ, SEE, SWING

Table 2: Most and least probable completions of event frames according to experimentally deter-
mined event distribution P

Event frame Most probable completion Least probable completion
PERSON EAT APPLE DOOR
CAT DRINK MILK BED
PERSON CAT HELP EAT

EAT FLOWER COW TOOTH

the world and the frequency with which speakers choose to discuss those events. In one version of
the UID hypothesis, we would expect that word order would be optimal with respect to the latter,
“speaker-weighted” frequencies. We refer to this as the “weak” hypothesis since it only requires
that a language be “internally” consistent, insofar as the word order is expected to be optimal with
respect to the topics spoken about. However, there is also a “strong” version of the hypothesis, which
states that the language must also be optimal with respect to the perceived frequencies of events in
the external world. To test the strong version of the UID word order hypothesis, it is not valid to rely
on corpus analysis. Accordingly, in this section we present the results of an experiment designed to
measure people’s perceptions regarding which events are most likely.

Our experiment consists of three parts. In the first part we identify the objectsO and relationsR for
the model world based on the first words learned by English-speaking children, on the assumption
that those words would reflect the objects and relations that are highly salient. The MacArthur
Communicative Development Inventory [6] provides a list of those words, along with norms for
when they are learned. We identified all of the words that were either singly-transitive verbs or
nouns that were potential subjects or objects for these verbs, yielding 324 nouns and 81 verbs. The
only transformation we made to this list was to replace all nouns that referred to specific people
(e.g., “Mommy” or “Grandpa”) with a single noun “Person”. In order to limit the total number of
possible events to a number tractable for parts two and three of the experiment, we then identified
the 40 objects and 10 relations2 uttered by the highest percentage of children below the age of 16
months; these comprise the sets O andR. The objects and relations are shown in Table 1.

The 40 objects and 10 relations in our world define a total of 16,000 events, but the overwhelming
majority of the events in the world are physically impossible (e.g., (TELEVISION, DRINK, CAT))
and thus should receive a probability of 0. The goal of the second part of the experiment was
to identify these impossible events. The first step was to identify the subset of objects capable
of acting as actors, indicated with asterisks in Table 1. We set the probability of events whose
subjects were non-actors to zero, leaving 6,800 events. To identify which of these events were still
impossible, we had two participants3 judge the possibility or impossibility of each, obtaining two
judgements for each event. When both judges agreed that an event was impossible, its probability
was set to zero; if they disagreed, we solicited a third judgement and set the event probability to
zero if the majority agreed that it was impossible. At the end of this process, a total of 2,536 events
remained. Subsequent analysis revealed that many participants had interpreted the noun OUTSIDE
as an adverb in events such as (BEAR, EAT, OUTSIDE), leading to events which should properly

2The ratio of 4 objects for every 1 relation was chosen to reflect the proportion of each reported in [6].
3This experiment involved 11,839 binary decisions in the second part and 35,280 binary choices in the third

part. In order to collect such a large quantity of data in a reasonable time period, we used Amazon.com’s “Me-
chanical Turk” web application to distribute the judgement tasks to a large international pool of participants,
who completed the tasks using their web browsers in exchange for small payments of cash or Amazon.com
store credit. A total of 8,956 participants contributed in total, presumably but not verifiably representing a
broad range of nationalities, ages, levels of education, etc.
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Figure 4: Distribution of information across words for the world instantiated from the experimentally
produced event distribution.

have been considered impossible being classed as possible; we therefore set all events involving the
noun OUTSIDE which did not involve the verb SEE to also be impossible. This reduced the number
of events to 2,352.

In the final part of the experiment, we derived a probability distribution over the remaining, possi-
ble events using the responses of participants to a large number of judgement tasks. In each task,
participants were presented with a pair of events and asked to indicate which of the two events they
considered most probable. Full details of this part of the experiment are available in the supple-
mentary material. Table 2 shows the most and least probable completions of several event frames
according to the distribution P produced by our experiment. The completions are in line with com-
mon sense, although some of the least probable completions are in fact physically impossible (e.g.
(CAT, DRINK, BED)), suggesting that the filtering in part two was not quite perfect.

We now analyse the P distribution we have estimated. The distribution of information among words
is shown in Figure 4 and the mean deviation scores are VSO (0.17), SVO (0.18), VOS (0.20), SOV
(0.23), OVS (0.23), OVS (0.24).

5 Discussion

On the basis of two corpora of child-directed speech, in different languages, and an experiment,
we have derived three different event distributions which are assumed to represent the important
features of the probabilistic structure of the physical world. From these different distributions we
derive three different preferential rankings of word orders according to the UID hypothesis. From
the English corpus, we get VSO > SVO > VOS > SOV > OSV > OVS; from the Japanese corpus,
we get SVO > VSO > SOV = VOS > OSV > OVS; from the experiment, we get VSO > SVO
> VOS > SOV = OVS > OSV. While these three rankings are not in perfect agreement, there is
some degree of common structure. All three rankings are compatible with the partial ranking (SVO,
VSO) > (SOV, VOS) > (OVS, OSV). How does this compare with the empirically observed ranking
(SOV, SVO) > VSO > (VOS, OVS) > OVS?

The strongest empirical regularity regarding word order frequency - that object-first word orders
are extremely rare - coincides with our most robust finding: object-first word orders lead to the
least uniform information density in all three of our estimated event distributions. These orders
together account for less than 2% of the world’s word order-sensitive languages, and in all our
models have deviation scores that are notably greater than the deviation scores of the other word
orders. What is the reason for this effect? As the profiles in Figures 2, 3 and 4 indicate, object-
first word orders deviate from uniformity because the first word (the object) carries disproportionate
amount of information. This seems to occur because many objects are predictive of very few subjects
or verbs. For instance, hearing the object word “water” implies only a few possibilities for verbs
(e.g., “drink”), which in turn restricts the subjects (e.g. to living things). By contrast, hearing the
verb “drink” implies many possibilities for objects (e.g., “water”, “coffee”, “cola”, “juice”, etc.).

There are further points of agreement between the rankings produced by our analyses and the em-
pirical data. All three of our estimated event distributions lead to word order rankings in which VSO
is ranked more highly than VOS, which is in agreement with the data. In fact, in all of our rankings,
SVO and VSO occupy the two highest positions (though their relative position varies), consistent
with the fact that these word orders occupy the second and third highest positions in the empirical
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ranking respectively, and are two of the only three word orders which appear with any appreciable
frequency.

The greatest apparent discrepancy between the rankings produced by our analyses and the empirical
data is the fact that SOV word order, which occurs frequently in real languages, appears to be only
moderately compatible with the UID hypothesis. One possible explanation for this is that some other
factor besides UID-compatibility has influenced the distribution of word orders, and this factor may
favour SOV sufficiently to lift it to the top or equal-top place in a combined ranking. Another
possibility is to combine the idea we saw earlier of common descent from SOV with the idea that
word order change away from SOV is influenced by the UID hypothesis. This explanation could
also lift SOV word order to a higher position in the word order ranking.
To what extent are our rankings consistent with the the theme-first principle (TFP), verb-object
bonding (VOB) and animate-first principle (AFP) principles of [17], which perfectly explain the
empirical ranking? The three orders that permit the greatest realization of the TFP and AFP prin-
ciples are SOV, SVO, and VSO. We note that two of these orders, SVO and VSO, are consistently
ranked highest in our results, and the third, SOV, is typically not too far behind. In fact, with the
event distribution derived from the Japanese corpus, SOV is in equal third place with VOS. This
suggests that perhaps the UID word order hypothesis is unable to provide a complete explanation of
all of the word order rankings, but is able provide a sensible justification for the TFP and/or AFP.
A full consideration of the effects of word order on information density should not limit itself only
to the considerations made in this paper, and so our results here must be considered only prelim-
inary. For instance, we have given no consideration to sentences involving intransitive verbs (SV
sentences), sentences without an explicit subject (VO sentences), or sentences involving ditransitive
verbs (SVO1O2 sentences). A word order optimal for one of these sentence classes may not be opti-
mal for others, so that the question of how to meaningfully combine the results of separate analyses
becomes a central challenge in such an extended study. Furthermore, a number of other word order
parameters beyond basic word order may have a significant effect on information density, such as
whether a language uses prepositions or postpositions, or the relative position of nouns and adjec-
tives or nouns and relative clauses. For instance, consider the order of nouns and adjectives. The
utterance “I ate the...” can be completed by any edible object, but “I ate the red...” only by those
objects which are both edible and red. Thus, adjectives which preceed unexpected nouns can be
used to “smooth out” what might otherwise be sudden spikes in information density. Adjectives
which come after nouns cannot do this. Several correlations and rules are known to exist between
various word order parameters, and it is possible that these effects may be able to be explained in
terms of information density.
On the whole, while the word order rankings recovered from our analyses do not perfectly match the
empirically observed ranking, they are in much better agreement with observation than one would
expect if a preference for UID had played no role whatsoever. Furthermore, the particular pattern
of what our rankings do and do not explain, and the ways our two rankings differ, are consistent
with a weaker hypothesis that UID may be able to provide a principled cognitive explanation for the
theme-first and/or animate-first principles of earlier work. It is possible that the discrepancies which
do exist between our results and the empirical distribution could be explained by a combination of
more and richer data and consideration of additional word order parameters. It is also the case that
even if information theoretic concerns have exerted a significant influence on language evolution,
there is no reason to expect them to have been the only such influence: genetic and social factors as
well additional cognitive constraints may have played some role as well, so that the UID hypothesis
alone need not explain all the observed regularity. Regardless, we have shown that information-
theoretic principles can explain several aspects of the empirical distribution of word orders, and
most robustly explains the most pronounced of these aspects: the nearly complete lack of object-
first languages. Moreover, they do so on independently justified, general cognitive principles, and
as such represent a significant advance in our understanding of word order.
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